Newton and conjugate gradient for harmonic maps from the disc into the sphere
ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 142-167

Voir la notice de l'article provenant de la source Numdam

We compute numerically the minimizers of the Dirichlet energy

E(u)=1 2 B 2 |u| 2 dx
among maps u:B 2 S 2 from the unit disc into the unit sphere that satisfy a boundary condition and a degree condition. We use a Sobolev gradient algorithm for the minimization and we prove that its continuous version preserves the degree. For the discretization of the problem we use continuous P 1 finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the discrete version of the algorithm (which is a preconditioned projected gradient). In order to improve the convergence, we generalize to manifolds the classical Newton and conjugate gradient algorithms. We give a proof of the quadratic convergence of the Newton algorithm for manifolds in a general setting.

DOI : 10.1051/cocv:2003040
Classification : 58E20, 78M10, 65N30, 90C53
Keywords: harmonic maps, finite elements, mesh-refinement, Sobolev gradient, Newton algorithm, conjugate gradient
@article{COCV_2004__10_1_142_0,
     author = {Pierre, Morgan},
     title = {Newton and conjugate gradient for harmonic maps from the disc into the sphere},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {142--167},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {1},
     year = {2004},
     doi = {10.1051/cocv:2003040},
     mrnumber = {2084259},
     zbl = {1076.65062},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003040/}
}
TY  - JOUR
AU  - Pierre, Morgan
TI  - Newton and conjugate gradient for harmonic maps from the disc into the sphere
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2004
SP  - 142
EP  - 167
VL  - 10
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003040/
DO  - 10.1051/cocv:2003040
LA  - en
ID  - COCV_2004__10_1_142_0
ER  - 
%0 Journal Article
%A Pierre, Morgan
%T Newton and conjugate gradient for harmonic maps from the disc into the sphere
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2004
%P 142-167
%V 10
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003040/
%R 10.1051/cocv:2003040
%G en
%F COCV_2004__10_1_142_0
Pierre, Morgan. Newton and conjugate gradient for harmonic maps from the disc into the sphere. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 142-167. doi: 10.1051/cocv:2003040

Cité par Sources :