Regularity of optimal shapes for the Dirichlet's energy with volume constraint
ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 99-122

Voir la notice de l'article provenant de la source Numdam

In this paper, we prove some regularity results for the boundary of an open subset of d which minimizes the Dirichlet’s energy among all open subsets with prescribed volume. In particular we show that, when the volume constraint is “saturated”, the reduced boundary of the optimal shape (and even the whole boundary in dimension 2) is regular if the state function is nonnegative.

DOI : 10.1051/cocv:2003038
Classification : 35R35, 49N60, 49Q10
Keywords: shape optimization, calculus of variations, free boundary, geometrical measure theory
@article{COCV_2004__10_1_99_0,
     author = {Briancon, Tanguy},
     title = {Regularity of optimal shapes for the {Dirichlet's} energy with volume constraint},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {99--122},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {1},
     year = {2004},
     doi = {10.1051/cocv:2003038},
     zbl = {1118.35078},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003038/}
}
TY  - JOUR
AU  - Briancon, Tanguy
TI  - Regularity of optimal shapes for the Dirichlet's energy with volume constraint
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2004
SP  - 99
EP  - 122
VL  - 10
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003038/
DO  - 10.1051/cocv:2003038
LA  - en
ID  - COCV_2004__10_1_99_0
ER  - 
%0 Journal Article
%A Briancon, Tanguy
%T Regularity of optimal shapes for the Dirichlet's energy with volume constraint
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2004
%P 99-122
%V 10
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003038/
%R 10.1051/cocv:2003038
%G en
%F COCV_2004__10_1_99_0
Briancon, Tanguy. Regularity of optimal shapes for the Dirichlet's energy with volume constraint. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 99-122. doi: 10.1051/cocv:2003038

Cité par Sources :