The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p
ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 28-52

Voir la notice de l'article provenant de la source Numdam

We consider the pseudo-p-laplacian, an anisotropic version of the p-laplacian operator for p2. We study relevant properties of its first eigenfunction for finite p and the limit problem as p.

DOI : 10.1051/cocv:2003035
Classification : 35P30, 35B30, 49R50, 35P15
Keywords: eigenvalue, anisotropic, pseudo-Laplace, viscosity solution, minimal Lipschitz extension, concavity, symmetry, convex rearrangement
@article{COCV_2004__10_1_28_0,
     author = {Belloni, Marino and Kawohl, Bernd},
     title = {The pseudo-$p${-Laplace} eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {28--52},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {1},
     year = {2004},
     doi = {10.1051/cocv:2003035},
     mrnumber = {2084254},
     zbl = {1092.35074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003035/}
}
TY  - JOUR
AU  - Belloni, Marino
AU  - Kawohl, Bernd
TI  - The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2004
SP  - 28
EP  - 52
VL  - 10
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003035/
DO  - 10.1051/cocv:2003035
LA  - en
ID  - COCV_2004__10_1_28_0
ER  - 
%0 Journal Article
%A Belloni, Marino
%A Kawohl, Bernd
%T The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2004
%P 28-52
%V 10
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003035/
%R 10.1051/cocv:2003035
%G en
%F COCV_2004__10_1_28_0
Belloni, Marino; Kawohl, Bernd. The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 28-52. doi: 10.1051/cocv:2003035

Cité par Sources :