Voir la notice de l'article provenant de la source Numdam
We consider the pseudo--laplacian, an anisotropic version of the -laplacian operator for . We study relevant properties of its first eigenfunction for finite and the limit problem as .
@article{COCV_2004__10_1_28_0, author = {Belloni, Marino and Kawohl, Bernd}, title = {The pseudo-$p${-Laplace} eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {28--52}, publisher = {EDP-Sciences}, volume = {10}, number = {1}, year = {2004}, doi = {10.1051/cocv:2003035}, mrnumber = {2084254}, zbl = {1092.35074}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003035/} }
TY - JOUR AU - Belloni, Marino AU - Kawohl, Bernd TI - The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$ JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 28 EP - 52 VL - 10 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003035/ DO - 10.1051/cocv:2003035 LA - en ID - COCV_2004__10_1_28_0 ER -
%0 Journal Article %A Belloni, Marino %A Kawohl, Bernd %T The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$ %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 28-52 %V 10 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003035/ %R 10.1051/cocv:2003035 %G en %F COCV_2004__10_1_28_0
Belloni, Marino; Kawohl, Bernd. The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 28-52. doi: 10.1051/cocv:2003035
Cité par Sources :