Statistical estimates for generalized splines
ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 553-562

Voir la notice de l'article provenant de la source Numdam

In this paper it is shown that the generalized smoothing spline obtained by solving an optimal control problem for a linear control system converges to a deterministic curve even when the data points are perturbed by random noise. We furthermore show that such a spline acts as a filter for white noise. Examples are constructed that support the practical usefulness of the method as well as gives some hints as to the speed of convergence.

DOI : 10.1051/cocv:2003026
Classification : 93-xx
Keywords: optimal control, smoothing splines, linear systems, interpolation
@article{COCV_2003__9__553_0,
     author = {Egerstedt, Magnus and Martin, Clyde},
     title = {Statistical estimates for generalized splines},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {553--562},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2003},
     doi = {10.1051/cocv:2003026},
     mrnumber = {1998714},
     zbl = {1070.41003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003026/}
}
TY  - JOUR
AU  - Egerstedt, Magnus
AU  - Martin, Clyde
TI  - Statistical estimates for generalized splines
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2003
SP  - 553
EP  - 562
VL  - 9
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003026/
DO  - 10.1051/cocv:2003026
LA  - en
ID  - COCV_2003__9__553_0
ER  - 
%0 Journal Article
%A Egerstedt, Magnus
%A Martin, Clyde
%T Statistical estimates for generalized splines
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2003
%P 553-562
%V 9
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003026/
%R 10.1051/cocv:2003026
%G en
%F COCV_2003__9__553_0
Egerstedt, Magnus; Martin, Clyde. Statistical estimates for generalized splines. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 553-562. doi: 10.1051/cocv:2003026

Cité par Sources :