Voir la notice de l'article provenant de la source Numdam
An optimal control problem when controls act on the boundary can also be understood as a variational principle under differential constraints and no restrictions on boundary and/or initial values. From this perspective, some existence theorems can be proved when cost functionals depend on the gradient of the state. We treat the case of elliptic and non-elliptic second order state laws only in the two-dimensional situation. Our results are based on deep facts about gradient Young measures.
@article{COCV_2003__9__437_0, author = {Pedregal, Pablo}, title = {Some remarks on existence results for optimal boundary control problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {437--448}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003021}, mrnumber = {1998709}, zbl = {1066.49005}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003021/} }
TY - JOUR AU - Pedregal, Pablo TI - Some remarks on existence results for optimal boundary control problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 437 EP - 448 VL - 9 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003021/ DO - 10.1051/cocv:2003021 LA - en ID - COCV_2003__9__437_0 ER -
%0 Journal Article %A Pedregal, Pablo %T Some remarks on existence results for optimal boundary control problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 437-448 %V 9 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003021/ %R 10.1051/cocv:2003021 %G en %F COCV_2003__9__437_0
Pedregal, Pablo. Some remarks on existence results for optimal boundary control problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 437-448. doi: 10.1051/cocv:2003021
Cité par Sources :