Everywhere regularity for vectorial functionals with general growth
ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 399-418

Voir la notice de l'article provenant de la source Numdam

We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models is

Fu= Ω a(x)[h|Du|] p(x) dx
with h a convex function with general growth (also exponential behaviour is allowed).

DOI : 10.1051/cocv:2003019
Classification : 49N60, 35J50
Keywords: minimizers, regularity, nonstandard growth, exponential growth
@article{COCV_2003__9__399_0,
     author = {Mascolo, Elvira and Migliorini, Anna Paola},
     title = {Everywhere regularity for vectorial functionals with general growth},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {399--418},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2003},
     doi = {10.1051/cocv:2003019},
     mrnumber = {1988669},
     zbl = {1066.49023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003019/}
}
TY  - JOUR
AU  - Mascolo, Elvira
AU  - Migliorini, Anna Paola
TI  - Everywhere regularity for vectorial functionals with general growth
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2003
SP  - 399
EP  - 418
VL  - 9
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003019/
DO  - 10.1051/cocv:2003019
LA  - en
ID  - COCV_2003__9__399_0
ER  - 
%0 Journal Article
%A Mascolo, Elvira
%A Migliorini, Anna Paola
%T Everywhere regularity for vectorial functionals with general growth
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2003
%P 399-418
%V 9
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003019/
%R 10.1051/cocv:2003019
%G en
%F COCV_2003__9__399_0
Mascolo, Elvira; Migliorini, Anna Paola. Everywhere regularity for vectorial functionals with general growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 399-418. doi: 10.1051/cocv:2003019

Cité par Sources :