Voir la notice de l'article provenant de la source Numdam
For systems with slowly varying parameters the controllability behavior is studied and the relation to the control sets for the systems with frozen parameters is clarified.
@article{COCV_2003__9__207_0, author = {Colonius, Fritz and Fabbri, Roberta}, title = {Controllability for systems with slowly varying parameters}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {207--216}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003010}, mrnumber = {1957099}, zbl = {1063.93006}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003010/} }
TY - JOUR AU - Colonius, Fritz AU - Fabbri, Roberta TI - Controllability for systems with slowly varying parameters JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 207 EP - 216 VL - 9 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003010/ DO - 10.1051/cocv:2003010 LA - en ID - COCV_2003__9__207_0 ER -
%0 Journal Article %A Colonius, Fritz %A Fabbri, Roberta %T Controllability for systems with slowly varying parameters %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 207-216 %V 9 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003010/ %R 10.1051/cocv:2003010 %G en %F COCV_2003__9__207_0
Colonius, Fritz; Fabbri, Roberta. Controllability for systems with slowly varying parameters. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 207-216. doi : 10.1051/cocv:2003010. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003010/
[1] Stability in the presence of singular perturbations. Nonlinear Anal. TMA 34 (1998) 817-827. | Zbl | MR
,[2] Tracking fast trajectories along a slow dynamics: A singular perturbations approach. SIAM J. Control Optim. 35 (1997) 1487-1507. | Zbl | MR
and ,[3] Smooth Invariant Manifolds and Normal Forms. World Scientific (1994). | Zbl | MR
and ,[4] The Dynamics of Control. Birkhäuser (2000). | Zbl | MR
and ,[5] On dynamic bifurcations in control systems, in Proc. IFAC Symposium on Nonlinear Control Systems (NOLCOS '01), 4-6 July 2001. St. Petersburg, Russia (2001) 140-143.
and ,[6] Analyzing Perturbed Nonlinear Dynamical Systems, in Proc. 9th German-Japanese Seminar “Nonlinear Problems in Dynamical Systems”. Straelen, Germany (to appear).
, and ,[7] Averaging of singularly perturbed systems. Nonlinear Anal. TMA 28 (1997) 1855-1865. | Zbl | MR
,[8] On the asymptotics of the Lyapunov spectrum under singular perturbations. IEEE Trans. Automat. Control 45 (2000) 565-568. | Zbl | MR
and ,[9] Lyapunov Spectrum and Control Sets, Dissertation Universität Augsburg. Augsburger Mathematische Schriften No. 34, Wißner Verlag, Augsburg (2000). | Zbl | MR
,[10] Lyapunov exponents and control sets near singular points. J. Differential Equations (to appear). | Zbl | MR
,[11] Nonlinear Systems. Prentice Hall (1996). | Zbl
,[12] Singular Perturbation Methods in Control: Analysis and Design. Academic Press (1986). | Zbl
, and ,[13] Stochastic penetration of smooth and fractal basin boundaries under noise excitation. Dynam. Stability Systems 5 (1990) 281-298. | Zbl | MR
and ,[14] Algorithms for Reachability Problems, Dissertation. Institut für Mathematik, Universität Augsburg, Augsburg (2001).
,[15] Set oriented methods for computing reachable sets and control sets. Discrete Contin. Dynam. Systems Ser. B (submitted). | Zbl | MR
,[16] Limits of singularly perturbed control problems with statistical dynamics of fast motions. SIAM J. Control Optim. 35 (1997) 1-28. | Zbl | MR
,Cité par Sources :