Voir la notice de l'article provenant de la source Numdam
A closed loop parametrical identification procedure for continuous-time constant linear systems is introduced. This approach which exhibits good robustness properties with respect to a large variety of additive perturbations is based on the following mathematical tools: (1) module theory; (2) differential algebra; (3) operational calculus. Several concrete case-studies with computer simulations demonstrate the efficiency of our on-line identification scheme.
Fliess, Michel  ; Sira-Ramírez, Hebertt 1
@article{COCV_2003__9__151_0, author = {Fliess, Michel and Sira-Ram{\'\i}rez, Hebertt}, title = {An algebraic framework for linear identification}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {151--168}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003008}, zbl = {1063.93014}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003008/} }
TY - JOUR AU - Fliess, Michel AU - Sira-Ramírez, Hebertt TI - An algebraic framework for linear identification JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 151 EP - 168 VL - 9 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003008/ DO - 10.1051/cocv:2003008 LA - en ID - COCV_2003__9__151_0 ER -
%0 Journal Article %A Fliess, Michel %A Sira-Ramírez, Hebertt %T An algebraic framework for linear identification %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 151-168 %V 9 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003008/ %R 10.1051/cocv:2003008 %G en %F COCV_2003__9__151_0
Fliess, Michel; Sira-Ramírez, Hebertt. An algebraic framework for linear identification. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 151-168. doi: 10.1051/cocv:2003008
Cité par Sources :