Geometric constraints on the domain for a class of minimum problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 125-133

Voir la notice de l'article provenant de la source Numdam

We consider minimization problems of the form min uϕ+W 0 1,1 (Ω) Ω [f(Du(x))-u(x)]dx where Ω N is a bounded convex open set, and the Borel function f: N [0,+] is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of Ω and the zero level set of f, we prove that the viscosity solution of a related Hamilton-Jacobi equation provides a minimizer for the integral functional.

DOI : 10.1051/cocv:2003003
Classification : 49J10, 49L25
Keywords: calculus of variations, existence, non-convex problems, non-coercive problems, viscosity solutions
@article{COCV_2003__9__125_0,
     author = {Crasta, Graziano and Malusa, Annalisa},
     title = {Geometric constraints on the domain for a class of minimum problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {125--133},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2003},
     doi = {10.1051/cocv:2003003},
     mrnumber = {1957093},
     zbl = {1066.49003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003003/}
}
TY  - JOUR
AU  - Crasta, Graziano
AU  - Malusa, Annalisa
TI  - Geometric constraints on the domain for a class of minimum problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2003
SP  - 125
EP  - 133
VL  - 9
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003003/
DO  - 10.1051/cocv:2003003
LA  - en
ID  - COCV_2003__9__125_0
ER  - 
%0 Journal Article
%A Crasta, Graziano
%A Malusa, Annalisa
%T Geometric constraints on the domain for a class of minimum problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2003
%P 125-133
%V 9
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003003/
%R 10.1051/cocv:2003003
%G en
%F COCV_2003__9__125_0
Crasta, Graziano; Malusa, Annalisa. Geometric constraints on the domain for a class of minimum problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 125-133. doi: 10.1051/cocv:2003003

Cité par Sources :