Voir la notice de l'article provenant de la source Numdam
Lower semicontinuity results are obtained for multiple integrals of the kind , where is a given positive measure on , and the vector-valued function belongs to the Sobolev space associated with . The proofs are essentially based on blow-up techniques, and a significant role is played therein by the concepts of tangent space and of tangent measures to . More precisely, for fully general , a notion of quasiconvexity for along the tangent bundle to , turns out to be necessary for lower semicontinuity; the sufficiency of such condition is also shown, when belongs to a suitable class of rectifiable measures.
@article{COCV_2003__9__105_0, author = {Fragal\`a, Ilaria}, title = {Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {105--124}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003002}, mrnumber = {1957092}, zbl = {1066.49009}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003002/} }
TY - JOUR AU - Fragalà, Ilaria TI - Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 105 EP - 124 VL - 9 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003002/ DO - 10.1051/cocv:2003002 LA - en ID - COCV_2003__9__105_0 ER -
%0 Journal Article %A Fragalà, Ilaria %T Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 105-124 %V 9 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003002/ %R 10.1051/cocv:2003002 %G en %F COCV_2003__9__105_0
Fragalà, Ilaria. Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 105-124. doi: 10.1051/cocv:2003002
Cité par Sources :