Voir la notice de l'article provenant de la source Numdam
We study the integral representation properties of limits of sequences of integral functionals like under nonstandard growth conditions of -type: namely, we assume that
@article{COCV_2002__7__495_0, author = {Coscia, Alessandra and Mucci, Domenico}, title = {Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {495--519}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002065}, mrnumber = {1925039}, zbl = {1036.49022}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002065/} }
TY - JOUR AU - Coscia, Alessandra AU - Mucci, Domenico TI - Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 495 EP - 519 VL - 7 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002065/ DO - 10.1051/cocv:2002065 LA - en ID - COCV_2002__7__495_0 ER -
%0 Journal Article %A Coscia, Alessandra %A Mucci, Domenico %T Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 495-519 %V 7 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002065/ %R 10.1051/cocv:2002065 %G en %F COCV_2002__7__495_0
Coscia, Alessandra; Mucci, Domenico. Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 495-519. doi: 10.1051/cocv:2002065
Cité par Sources :