Voir la notice de l'article provenant de la source Numdam
3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients bounded in Here it is shown that, up to a subsequence, may be decomposed as where carries all the concentration effects, i.e. is equi-integrable, and captures the oscillatory behavior, i.e. in measure. In addition, if is a recovering sequence then nearby
@article{COCV_2002__7__443_0, author = {Bocea, Marian and Fonseca, Irene}, title = {Equi-integrability results for {3D-2D} dimension reduction problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {443--470}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002063}, mrnumber = {1925037}, zbl = {1044.49010}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002063/} }
TY - JOUR AU - Bocea, Marian AU - Fonseca, Irene TI - Equi-integrability results for 3D-2D dimension reduction problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 443 EP - 470 VL - 7 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002063/ DO - 10.1051/cocv:2002063 LA - en ID - COCV_2002__7__443_0 ER -
%0 Journal Article %A Bocea, Marian %A Fonseca, Irene %T Equi-integrability results for 3D-2D dimension reduction problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 443-470 %V 7 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002063/ %R 10.1051/cocv:2002063 %G en %F COCV_2002__7__443_0
Bocea, Marian; Fonseca, Irene. Equi-integrability results for 3D-2D dimension reduction problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 443-470. doi: 10.1051/cocv:2002063
Cité par Sources :