Sign changing solutions for elliptic equations with critical growth in cylinder type domains
ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 407-419
Voir la notice de l'article provenant de la source Numdam
We prove the existence of positive and of nodal solutions for , , where and , for a class of open subsets of lying between two infinite cylinders.
DOI :
10.1051/cocv:2002061
Classification :
35J20, 35J25, 35J65, 35B05
Keywords: nodal solutions, cylindrical domains, semilinear elliptic equation, critical Sobolev exponent, concentration-compactness
Keywords: nodal solutions, cylindrical domains, semilinear elliptic equation, critical Sobolev exponent, concentration-compactness
@article{COCV_2002__7__407_0,
author = {Gir\~ao, Pedro and Ramos, Miguel},
title = {Sign changing solutions for elliptic equations with critical growth in cylinder type domains},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {407--419},
publisher = {EDP-Sciences},
volume = {7},
year = {2002},
doi = {10.1051/cocv:2002061},
mrnumber = {1925035},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002061/}
}
TY - JOUR AU - Girão, Pedro AU - Ramos, Miguel TI - Sign changing solutions for elliptic equations with critical growth in cylinder type domains JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 407 EP - 419 VL - 7 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002061/ DO - 10.1051/cocv:2002061 LA - en ID - COCV_2002__7__407_0 ER -
%0 Journal Article %A Girão, Pedro %A Ramos, Miguel %T Sign changing solutions for elliptic equations with critical growth in cylinder type domains %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 407-419 %V 7 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002061/ %R 10.1051/cocv:2002061 %G en %F COCV_2002__7__407_0
Girão, Pedro; Ramos, Miguel. Sign changing solutions for elliptic equations with critical growth in cylinder type domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 407-419. doi: 10.1051/cocv:2002061
Cité par Sources :