Sign changing solutions for elliptic equations with critical growth in cylinder type domains
ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 407-419

Voir la notice de l'article provenant de la source Numdam

We prove the existence of positive and of nodal solutions for -Δu=|u| p-2 u+μ|u| q-2 u, uH 0 1 (Ω), where μ>0 and 2<q<p=2N(N-2), for a class of open subsets Ω of N lying between two infinite cylinders.

DOI : 10.1051/cocv:2002061
Classification : 35J20, 35J25, 35J65, 35B05
Keywords: nodal solutions, cylindrical domains, semilinear elliptic equation, critical Sobolev exponent, concentration-compactness
@article{COCV_2002__7__407_0,
     author = {Gir\~ao, Pedro and Ramos, Miguel},
     title = {Sign changing solutions for elliptic equations with critical growth in cylinder type domains},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {407--419},
     publisher = {EDP-Sciences},
     volume = {7},
     year = {2002},
     doi = {10.1051/cocv:2002061},
     mrnumber = {1925035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002061/}
}
TY  - JOUR
AU  - Girão, Pedro
AU  - Ramos, Miguel
TI  - Sign changing solutions for elliptic equations with critical growth in cylinder type domains
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 407
EP  - 419
VL  - 7
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002061/
DO  - 10.1051/cocv:2002061
LA  - en
ID  - COCV_2002__7__407_0
ER  - 
%0 Journal Article
%A Girão, Pedro
%A Ramos, Miguel
%T Sign changing solutions for elliptic equations with critical growth in cylinder type domains
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 407-419
%V 7
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002061/
%R 10.1051/cocv:2002061
%G en
%F COCV_2002__7__407_0
Girão, Pedro; Ramos, Miguel. Sign changing solutions for elliptic equations with critical growth in cylinder type domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 407-419. doi: 10.1051/cocv:2002061

Cité par Sources :