Univalent σ-harmonic mappings : applications to composites
ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 379-406

Voir la notice de l'article provenant de la source Numdam

This paper is part of a larger project initiated with [2]. The final aim of the present paper is to give bounds for the homogenized (or effective) conductivity in two dimensional linear conductivity. The main focus is therefore the periodic setting. We prove new variational principles that are shown to be of interest in finding bounds on the homogenized conductivity. Our results unify previous approaches by the second author and make transparent the central role of quasiconformal mappings in all the two dimensional G-closure problems in conductivity.

DOI : 10.1051/cocv:2002060
Classification : 35B27, 74A40, 74Q20, 30C62
Keywords: effective properties, harmonic mappings, composite materials, quasiregular mappings
@article{COCV_2002__7__379_0,
     author = {Alessandrini, Giovanni and Nesi, Vincenzo},
     title = {Univalent $\sigma $-harmonic mappings : applications to composites},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {379--406},
     publisher = {EDP-Sciences},
     volume = {7},
     year = {2002},
     doi = {10.1051/cocv:2002060},
     mrnumber = {1925034},
     zbl = {1024.30010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002060/}
}
TY  - JOUR
AU  - Alessandrini, Giovanni
AU  - Nesi, Vincenzo
TI  - Univalent $\sigma $-harmonic mappings : applications to composites
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 379
EP  - 406
VL  - 7
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002060/
DO  - 10.1051/cocv:2002060
LA  - en
ID  - COCV_2002__7__379_0
ER  - 
%0 Journal Article
%A Alessandrini, Giovanni
%A Nesi, Vincenzo
%T Univalent $\sigma $-harmonic mappings : applications to composites
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 379-406
%V 7
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002060/
%R 10.1051/cocv:2002060
%G en
%F COCV_2002__7__379_0
Alessandrini, Giovanni; Nesi, Vincenzo. Univalent $\sigma $-harmonic mappings : applications to composites. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 379-406. doi: 10.1051/cocv:2002060

Cité par Sources :