Voir la notice de l'article provenant de la source Numdam
This paper is part of a larger project initiated with [2]. The final aim of the present paper is to give bounds for the homogenized (or effective) conductivity in two dimensional linear conductivity. The main focus is therefore the periodic setting. We prove new variational principles that are shown to be of interest in finding bounds on the homogenized conductivity. Our results unify previous approaches by the second author and make transparent the central role of quasiconformal mappings in all the two dimensional -closure problems in conductivity.
@article{COCV_2002__7__379_0, author = {Alessandrini, Giovanni and Nesi, Vincenzo}, title = {Univalent $\sigma $-harmonic mappings : applications to composites}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {379--406}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002060}, mrnumber = {1925034}, zbl = {1024.30010}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002060/} }
TY - JOUR AU - Alessandrini, Giovanni AU - Nesi, Vincenzo TI - Univalent $\sigma $-harmonic mappings : applications to composites JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 379 EP - 406 VL - 7 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002060/ DO - 10.1051/cocv:2002060 LA - en ID - COCV_2002__7__379_0 ER -
%0 Journal Article %A Alessandrini, Giovanni %A Nesi, Vincenzo %T Univalent $\sigma $-harmonic mappings : applications to composites %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 379-406 %V 7 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002060/ %R 10.1051/cocv:2002060 %G en %F COCV_2002__7__379_0
Alessandrini, Giovanni; Nesi, Vincenzo. Univalent $\sigma $-harmonic mappings : applications to composites. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 379-406. doi: 10.1051/cocv:2002060
Cité par Sources :