Voir la notice de l'article provenant de la source Numdam
The boundary control problem for the dynamical Lame system (isotropic elasticity model) is considered. The continuity of the “input state” map in -norms is established. A structure of the reachable sets for arbitrary is studied. In general case, only the first component of the complete state may be controlled, an approximate controllability occurring in the subdomain filled with the shear (slow) waves. The controllability results are applied to the problem of the boundary data continuation. If exceeds the time needed for shear waves to fill the entire domain, then the response operator (“input output” map) uniquely determines for any . A procedure recovering via is also described.
@article{COCV_2002__8__143_0, author = {Belishev, M. I. and Lasiecka, I.}, title = {The dynamical {Lame} system : regularity of solutions, boundary controllability and boundary data continuation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {143--167}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002058}, mrnumber = {1932948}, zbl = {1064.93019}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002058/} }
TY - JOUR AU - Belishev, M. I. AU - Lasiecka, I. TI - The dynamical Lame system : regularity of solutions, boundary controllability and boundary data continuation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 143 EP - 167 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002058/ DO - 10.1051/cocv:2002058 LA - en ID - COCV_2002__8__143_0 ER -
%0 Journal Article %A Belishev, M. I. %A Lasiecka, I. %T The dynamical Lame system : regularity of solutions, boundary controllability and boundary data continuation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 143-167 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002058/ %R 10.1051/cocv:2002058 %G en %F COCV_2002__8__143_0
Belishev, M. I.; Lasiecka, I. The dynamical Lame system : regularity of solutions, boundary controllability and boundary data continuation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 143-167. doi: 10.1051/cocv:2002058
Cité par Sources :