Voir la notice de l'article provenant de la source Numdam
This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures.
@article{COCV_2002__8__489_0, author = {Conca, Carlos and Vanninathan, M.}, title = {Fourier approach to homogenization problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {489--511}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002048}, mrnumber = {1932961}, zbl = {1065.35045}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002048/} }
TY - JOUR AU - Conca, Carlos AU - Vanninathan, M. TI - Fourier approach to homogenization problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 489 EP - 511 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002048/ DO - 10.1051/cocv:2002048 LA - en ID - COCV_2002__8__489_0 ER -
%0 Journal Article %A Conca, Carlos %A Vanninathan, M. %T Fourier approach to homogenization problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 489-511 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002048/ %R 10.1051/cocv:2002048 %G en %F COCV_2002__8__489_0
Conca, Carlos; Vanninathan, M. Fourier approach to homogenization problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 489-511. doi: 10.1051/cocv:2002048
Cité par Sources :