Voir la notice de l'article provenant de la source Numdam
This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures.
@article{COCV_2002__8__489_0, author = {Conca, Carlos and Vanninathan, M.}, title = {Fourier approach to homogenization problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {489--511}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002048}, mrnumber = {1932961}, zbl = {1065.35045}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002048/} }
TY - JOUR AU - Conca, Carlos AU - Vanninathan, M. TI - Fourier approach to homogenization problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 489 EP - 511 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002048/ DO - 10.1051/cocv:2002048 LA - en ID - COCV_2002__8__489_0 ER -
%0 Journal Article %A Conca, Carlos %A Vanninathan, M. %T Fourier approach to homogenization problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 489-511 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002048/ %R 10.1051/cocv:2002048 %G en %F COCV_2002__8__489_0
Conca, Carlos; Vanninathan, M. Fourier approach to homogenization problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 489-511. doi : 10.1051/cocv:2002048. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002048/
[1] Eigenfrequencies of a tube bundle immersed in a fluid. Appl. Math. Optim. 18 (1988) 1-38. | Zbl | MR
and ,[2] Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | Zbl | MR
,[3] Bloch-wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 (1998) 153-208. | Zbl | MR
and ,[4] Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal. 29 (1997) 343-379. | Zbl | MR
and ,[5] Bloch wave homogenization for a spectral problem in fluid-solid structures. Arch. Rational Mech. Anal. 135 (1996) 197-257. | Zbl | MR
and ,[6] Analyse asymptotique spectrale de l'équation des ondes. Homogénéisation par ondes de Bloch. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 293-298. | Zbl
and ,[7] Analyse asymptotique spectrale de l'équation des ondes. Complétude du spectre de Bloch. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 557-562. | Zbl
and ,[8] Asymptotic Analysis in Periodic Structures. North-Holland, Amsterdam (1978). | Zbl | MR
, and ,[9] Über die Quantenmechanik der Electronen in Kristallgittern. Z. Phys. 52 (1928) 555-600. | JFM
,[10] Sulla convergenza delle soluzioni di disequazioni variazionali. Ann. Mat. Pura Appl. 4 (1977) 137-159. | Zbl | MR
and ,[11] Une remarque sur l'analyse asymptotique spectrale en homogénéisation. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 1043-1048. | Zbl
and ,[12] Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston (1997). | Zbl | MR
and ,[13] Numerical experiments with the Bloch-Floquet approach in homogenization (to appear). | Zbl | MR
, and ,[14] Bloch Approximation in Homogenization and Applications. SIAM J. Math. Anal. (in press). | Zbl | MR
, and ,[15] Bloch Approximation in bounded domains. Preprint (2002). | MR
, and ,[16] Application of Bloch decomposition in wave propagation problems (in preparation).
, and ,[17] Fluids and Periodic Structures. J. Wiley and Sons/Masson, New York/Paris, Collection RAM 38 (1995). | Zbl | MR
, and ,[18] Limiting behaviour of a spectral problem in fluid-solid structures. Asymp. Anal. 6 (1993) 365-389. | Zbl | MR
, and ,[19] Problèmes Mathématiques en Couplage Fluide-Structure. Applications aux Faisceaux Tubulaires. Eyrolles, Paris (1994). | Zbl
, , and ,[20] Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math. 57 (1997) 1639-1659. | Zbl | MR
and ,[21] On uniform -estimates in periodic homogenization. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 499-517. | Zbl | MR
and ,[22] A spectral problem arising in fluid-solid structures. Comput. Methods Appl. Mech. Engrg. 69 (1988) 215-242. | Zbl | MR
and ,[23] An Introduction to Convergence. Birkhäuser, Boston (1993). | Zbl | MR
,[24] Band-gap structure of spectra of periodic dielectric and accoustic media. I, scalar model. SIAM J. Appl. Math. 56 (1996) 68-88. | Zbl | MR
and ,[25] Sur les équations différentielles linéaires à coefficients périodiques. Ann. École Norm. Sér. 2 12 (1883) 47-89. | MR | JFM | mathdoc-id
,[26] Expansion in series of eigenfunctions of an equation with periodic coefficients. Dokl. Akad. Nauk SSSR 73 (1950) 1117-1120. | MR
,[27] Mesures semi-classiques et ondes de Bloch, in Séminaire Equations aux Dérivées Partielles, Vol. 16, 1990-1991. École Polytechnique, Palaiseau (1991). | Zbl | mathdoc-id
,[28] Microlocal defect measures. Comm. Partial Differential Equation 16 (1991) 1761-1794. | Zbl | MR
,[29] Homogenization limits and Wigner transforms. Comm. Pure. Appl. Math. 50 (1997) 321-377. | Zbl | MR
, , and ,[30] Analysis of Linear Partial Differential Operators III. Springer-Verlag, Berlin (1985). | Zbl | MR
,[31] Homogenization of elliptic eigenvalue problems, I and II. Appl. Math. Optim. 5 (1979) 153-167, 197-216. | Zbl | MR
,[32] Sur les mesures de Wigner. Revista Math. Iberoamer. 9 (1993) 553-618. | Zbl | MR
and ,[33] A Wigner function approach to semiclassical limits: electrons in a periodic potential. J. Math. Phys. 35 (1994) 1066-1094. | Zbl | MR
, and ,[34] An approach for constructing families of homogenized equations for periodic media I and II. SIAM J. Math. Anal. 2 (1991) 1-15, 16-33. | Zbl
and ,[35] Zbl
, (1977-78) -Convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes. English translation: Murat and L. Tartar, -Convergence, in F. Topics in the Mathematical Modelling of Composite Materials, edited by A. Cherkaev and R. Kohn. Birkhäuser Verlag, Boston. Series Progress in Nonlinear Differential Equations and their Applications 31 (1977). |[36] A survey on compensated compactness, in Contributions to Modern Calculus of Variations, edited by L. Cesari, Pitman Res. Notes in Math. Ser. 148 (1987) 145-183. | MR
,[37] A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | Zbl | MR
,[38] Partial differential equations with periodic coefficients and Bloch waves in crystals. J. Math. Phys. 5 (1964) 1499-1504. | Zbl | MR
and ,[39] On the limiting behaviour of a sequence of operators defined in different Hilbert's spaces. Upsekhi Math. Nauk. 44 (1989) 157-158. | Zbl
, and ,[40] Global behaviour of large elastic tube-bundles immersed in a fluid. Comput. Mech. 2 (1987) 105-118. | Zbl
,[41] Eigenfrequencies of a tube-bundle placed in a confined fluid. Comput. Methods Appl. Mech. Engrg. 30 (1982) 75-93. | Zbl | MR
,[42] Methods of Modern Mathematical Physics. I. Functional Analysis, II. Fourier Analysis and Self-Adjointness, III. Scattering Theory, IV. Analysis of Operators. Academic Press, New York (1972-78). | Zbl | MR
and ,[43] Non-Homogeneous Media and Vibration Theory. Springer-Verlag, Berlin. Lecture Notes in Phys. 127 (1980). | Zbl
,[44] Vibration and Coupling of Continuous Systems. Asymptotic Methods. Springer-Verlag, Berlin (1989). | Zbl
and ,[45] A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51 (1991) 984-1005. | Zbl | MR
and ,[46] -measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193-230. | Zbl | MR
,[47] Problèmes d'Homogénéisation dans les Equations aux Dérivées Partielles, Cours Peccot au Collège de France (1977). Partially written in F. Murat [25].
,[48] Homogenization and eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 239-271. | Zbl | MR
,[49] Theory of Bloch waves. J. Anal. Math. 33 (1978) 146-167. | Zbl | MR
,Cité par Sources :