Voir la notice de l'article provenant de la source Numdam
We consider a boundary optimal control problem for the Maxwell system with a final value cost criterion. We introduce a time domain decomposition procedure for the corresponding optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local solutions and controls converge to the global ones. The process is inherently parallel and is suitable for real-time control applications.
@article{COCV_2002__8__775_0, author = {Lagnese, John E. and Leugering, G.}, title = {Time domain decomposition in final value optimal control of the {Maxwell} system}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {775--799}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002042}, mrnumber = {1932973}, zbl = {1063.78029}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002042/} }
TY - JOUR AU - Lagnese, John E. AU - Leugering, G. TI - Time domain decomposition in final value optimal control of the Maxwell system JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 775 EP - 799 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002042/ DO - 10.1051/cocv:2002042 LA - en ID - COCV_2002__8__775_0 ER -
%0 Journal Article %A Lagnese, John E. %A Leugering, G. %T Time domain decomposition in final value optimal control of the Maxwell system %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 775-799 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002042/ %R 10.1051/cocv:2002042 %G en %F COCV_2002__8__775_0
Lagnese, John E.; Leugering, G. Time domain decomposition in final value optimal control of the Maxwell system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 775-799. doi: 10.1051/cocv:2002042
Cité par Sources :