Voir la notice de l'article provenant de la source Numdam
In this paper, we investigate the problem of fast rotating fluids between two infinite plates with Dirichlet boundary conditions and “turbulent viscosity” for general initial data. We use dispersive effect to prove strong convergence to the solution of the bimensionnal Navier-Stokes equations modified by the Ekman pumping term.
@article{COCV_2002__8__441_0, author = {Chemin, Jean-Yves and Desjardins, Beno{\^\i}t and Gallagher, Isabelle and Grenier, Emmanuel}, title = {Ekman boundary layers in rotating fluids}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {441--466}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002037}, mrnumber = {1932959}, zbl = {1070.35505}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002037/} }
TY - JOUR AU - Chemin, Jean-Yves AU - Desjardins, Benoît AU - Gallagher, Isabelle AU - Grenier, Emmanuel TI - Ekman boundary layers in rotating fluids JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 441 EP - 466 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002037/ DO - 10.1051/cocv:2002037 LA - en ID - COCV_2002__8__441_0 ER -
%0 Journal Article %A Chemin, Jean-Yves %A Desjardins, Benoît %A Gallagher, Isabelle %A Grenier, Emmanuel %T Ekman boundary layers in rotating fluids %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 441-466 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002037/ %R 10.1051/cocv:2002037 %G en %F COCV_2002__8__441_0
Chemin, Jean-Yves; Desjardins, Benoît; Gallagher, Isabelle; Grenier, Emmanuel. Ekman boundary layers in rotating fluids. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 441-466. doi: 10.1051/cocv:2002037
Cité par Sources :