Voir la notice de l'article provenant de la source Numdam
We state and prove a Korn-like inequality for a vector field in a bounded open set of , satisfying a tangency boundary condition. This inequality, which is crucial in our study of the trend towards equilibrium for dilute gases, holds true if and only if the domain is not axisymmetric. We give quantitative, explicit estimates on how the departure from axisymmetry affects the constants; a Monge-Kantorovich minimization problem naturally arises in this process. Variants in the axisymmetric case are briefly discussed.
@article{COCV_2002__8__603_0, author = {Desvillettes, L. and Villani, C\'edric}, title = {On a variant of {Korn's} inequality arising in statistical mechanics}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {603--619}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002036}, zbl = {1092.82032}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002036/} }
TY - JOUR AU - Desvillettes, L. AU - Villani, Cédric TI - On a variant of Korn's inequality arising in statistical mechanics JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 603 EP - 619 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002036/ DO - 10.1051/cocv:2002036 LA - en ID - COCV_2002__8__603_0 ER -
%0 Journal Article %A Desvillettes, L. %A Villani, Cédric %T On a variant of Korn's inequality arising in statistical mechanics %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 603-619 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002036/ %R 10.1051/cocv:2002036 %G en %F COCV_2002__8__603_0
Desvillettes, L.; Villani, Cédric. On a variant of Korn's inequality arising in statistical mechanics. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 603-619. doi: 10.1051/cocv:2002036
Cité par Sources :