Voir la notice de l'article provenant de la source Numdam
The receding horizon control strategy for dynamical systems posed in infinite dimensional spaces is analysed. Its stabilising property is verified provided control Lyapunov functionals are used as terminal penalty functions. For closed loop dissipative systems the terminal penalty can be chosen as quadratic functional. Applications to the Navier-Stokes equations, semilinear wave equations and reaction diffusion systems are given.
@article{COCV_2002__8__741_0, author = {Ito, Kazufumi and Kunisch, Karl}, title = {Receding horizon optimal control for infinite dimensional systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {741--760}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002032}, mrnumber = {1932971}, zbl = {1066.49020}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002032/} }
TY - JOUR AU - Ito, Kazufumi AU - Kunisch, Karl TI - Receding horizon optimal control for infinite dimensional systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 741 EP - 760 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002032/ DO - 10.1051/cocv:2002032 LA - en ID - COCV_2002__8__741_0 ER -
%0 Journal Article %A Ito, Kazufumi %A Kunisch, Karl %T Receding horizon optimal control for infinite dimensional systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 741-760 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002032/ %R 10.1051/cocv:2002032 %G en %F COCV_2002__8__741_0
Ito, Kazufumi; Kunisch, Karl. Receding horizon optimal control for infinite dimensional systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 741-760. doi: 10.1051/cocv:2002032
Cité par Sources :