Linear programming interpretations of Mather's variational principle
ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 693-702

Voir la notice de l'article provenant de la source Numdam

We discuss some implications of linear programming for Mather theory [13, 14, 15] and its finite dimensional approximations. We find that the complementary slackness condition of duality theory formally implies that the Mather set lies in an n-dimensional graph and as well predicts the relevant nonlinear PDE for the “weak KAM” theory of Fathi [6, 7, 8, 5].

DOI : 10.1051/cocv:2002030
Classification : 90C05, 35F20
Keywords: linear programming, duality, weak KAM theory
@article{COCV_2002__8__693_0,
     author = {Evans, L. C. and Gomes, D.},
     title = {Linear programming interpretations of {Mather's} variational principle},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {693--702},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     doi = {10.1051/cocv:2002030},
     zbl = {1090.90143},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002030/}
}
TY  - JOUR
AU  - Evans, L. C.
AU  - Gomes, D.
TI  - Linear programming interpretations of Mather's variational principle
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 693
EP  - 702
VL  - 8
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002030/
DO  - 10.1051/cocv:2002030
LA  - en
ID  - COCV_2002__8__693_0
ER  - 
%0 Journal Article
%A Evans, L. C.
%A Gomes, D.
%T Linear programming interpretations of Mather's variational principle
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 693-702
%V 8
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002030/
%R 10.1051/cocv:2002030
%G en
%F COCV_2002__8__693_0
Evans, L. C.; Gomes, D. Linear programming interpretations of Mather's variational principle. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 693-702. doi: 10.1051/cocv:2002030

Cité par Sources :