Voir la notice de l'article provenant de la source Numdam
Output least squares stability for the diffusion coefficient in an elliptic equation in dimension two is analyzed. This guarantees Lipschitz stability of the solution of the least squares formulation with respect to perturbations in the data independently of their attainability. The analysis shows the influence of the flow direction on the parameter to be estimated. A scale analysis for multi-scale resolution of the unknown parameter is provided.
@article{COCV_2002__8__423_0, author = {Chavent, Guy and Kunisch, Karl}, title = {The output least squares identifiability of the diffusion coefficient from an $H^1$-observation in a {2-D} elliptic equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {423--440}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002028}, zbl = {1092.93042}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002028/} }
TY - JOUR AU - Chavent, Guy AU - Kunisch, Karl TI - The output least squares identifiability of the diffusion coefficient from an $H^1$-observation in a 2-D elliptic equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 423 EP - 440 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002028/ DO - 10.1051/cocv:2002028 LA - en ID - COCV_2002__8__423_0 ER -
%0 Journal Article %A Chavent, Guy %A Kunisch, Karl %T The output least squares identifiability of the diffusion coefficient from an $H^1$-observation in a 2-D elliptic equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 423-440 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002028/ %R 10.1051/cocv:2002028 %G en %F COCV_2002__8__423_0
Chavent, Guy; Kunisch, Karl. The output least squares identifiability of the diffusion coefficient from an $H^1$-observation in a 2-D elliptic equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 423-440. doi : 10.1051/cocv:2002028. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002028/
[1] Elliptic Equations in Divergence Form, Geometric Critical Points of Solutions, and Stekloff Eigenfunctions. SIAM J. Math. Anal. 25-5 (1994) 1259-1268. | Zbl | MR
and ,[2] Identification of distributed parameter systems: About the output least square method, its implementation and identifiability, in Proc. IFAC Symposium on Identification. Pergamon (1979) 85-97. | Zbl
,[3] Quasi convex sets and size curvature condition, application to nonlinear inversion. J. Appl. Math. Optim. 24 (1991) 129-169. | Zbl | MR
,[4] New size curvature conditions for strict quasi convexity of sets. SIAM J. Control Optim. 29-6 (1991) 1348-1372. | Zbl | MR
,[5] A geometric theory for the -stability of the inverse problem in a 1-D elliptic equation from an -observation. Appl. Math. Optim. 27 (1993) 231-260. | Zbl
and ,[6] On Weakly Nonlinear Inverse Problems. SIAM J. Appl. Math. 56-2 (1996) 542-572. | Zbl | MR
and ,[7] State-space regularization: Geometric theory. Appl. Math. Optim. 37 (1998) 243-267. | Zbl | MR
and ,[8] The Output Least Squares Identifiability of the Diffusion Coefficient from an -Observation in a Elliptic Equation. INRIA Report 4067 (2000).
and ,[9] Multiscale parametrization for the estimation of a diffusion coefficient in elliptic and parabolic problems, in Fifth IFAC Symposium on Control of Distributed Parameter Systems. Perpignan, France (1989).
and ,[10] A note on the identifiability of distributed parameters in elliptic systems. SIAM J. Math. Anal. 18 (1987) 13781-384. | Zbl | MR
and ,[11] Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1979). | Zbl
and ,[12] Assessing the validity of a linearized error analysis for a nonlinear parameter estimation problem. Preprint.
, , and ,[13] Nonlinearity, scale, and sensitivity for parameter estimation problems. Preprint. | Zbl
and ,[14] Inverse Problems for Partial Differential Equations. Springer-Verlag, Berlin (1998). | Zbl
,[15] On the injectivity and linearization of the coefficient to solution mapping for elliptic boundary value problems. J. Math. Anal. Appl. 188 (1994) 1040-1066. | Zbl | MR
and ,[16] A multiresolution method for distributed parameter estimation. SIAM J. Sci. Stat. Comp. 14 (1993) 389-405. | Zbl | MR
,[17] An inverse problem for the steady state diffusion equation. SIAM J. Appl. Math. 4 (1981), 210-221. | Zbl | MR
,[18] Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). | Zbl | MR
,Cité par Sources :