Voir la notice de l'article provenant de la source Numdam
Output least squares stability for the diffusion coefficient in an elliptic equation in dimension two is analyzed. This guarantees Lipschitz stability of the solution of the least squares formulation with respect to perturbations in the data independently of their attainability. The analysis shows the influence of the flow direction on the parameter to be estimated. A scale analysis for multi-scale resolution of the unknown parameter is provided.
@article{COCV_2002__8__423_0, author = {Chavent, Guy and Kunisch, Karl}, title = {The output least squares identifiability of the diffusion coefficient from an $H^1$-observation in a {2-D} elliptic equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {423--440}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002028}, zbl = {1092.93042}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002028/} }
TY - JOUR AU - Chavent, Guy AU - Kunisch, Karl TI - The output least squares identifiability of the diffusion coefficient from an $H^1$-observation in a 2-D elliptic equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 423 EP - 440 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002028/ DO - 10.1051/cocv:2002028 LA - en ID - COCV_2002__8__423_0 ER -
%0 Journal Article %A Chavent, Guy %A Kunisch, Karl %T The output least squares identifiability of the diffusion coefficient from an $H^1$-observation in a 2-D elliptic equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 423-440 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002028/ %R 10.1051/cocv:2002028 %G en %F COCV_2002__8__423_0
Chavent, Guy; Kunisch, Karl. The output least squares identifiability of the diffusion coefficient from an $H^1$-observation in a 2-D elliptic equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 423-440. doi: 10.1051/cocv:2002028
Cité par Sources :