Uniform estimates for the parabolic Ginzburg-Landau equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 219-238

Voir la notice de l'article provenant de la source Numdam

We consider complex-valued solutions u ε of the Ginzburg-Landau equation on a smooth bounded simply connected domain Ω of N , N2, where ε>0 is a small parameter. We assume that the Ginzburg-Landau energy E ε (u ε ) verifies the bound (natural in the context) E ε (u ε )M 0 |logε|, where M 0 is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of u ε , as ε0, is to establish uniform L p bounds for the gradient, for some p>1. We review some recent techniques developed in the elliptic case in [7], discuss some variants, and extend the methods to the associated parabolic equation.

DOI : 10.1051/cocv:2002026
Classification : 35K55, 35J60, 58E50, 49J10
Keywords: Ginzburg-Landau, parabolic equations, Hodge-de Rham decomposition, jacobians
@article{COCV_2002__8__219_0,
     author = {Bethuel, F. and Orlandi, G.},
     title = {Uniform estimates for the parabolic {Ginzburg-Landau} equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {219--238},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     doi = {10.1051/cocv:2002026},
     zbl = {1078.35013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002026/}
}
TY  - JOUR
AU  - Bethuel, F.
AU  - Orlandi, G.
TI  - Uniform estimates for the parabolic Ginzburg-Landau equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 219
EP  - 238
VL  - 8
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002026/
DO  - 10.1051/cocv:2002026
LA  - en
ID  - COCV_2002__8__219_0
ER  - 
%0 Journal Article
%A Bethuel, F.
%A Orlandi, G.
%T Uniform estimates for the parabolic Ginzburg-Landau equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 219-238
%V 8
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002026/
%R 10.1051/cocv:2002026
%G en
%F COCV_2002__8__219_0
Bethuel, F.; Orlandi, G. Uniform estimates for the parabolic Ginzburg-Landau equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 219-238. doi: 10.1051/cocv:2002026

Cité par Sources :