Voir la notice de l'article provenant de la source Numdam
We consider complex-valued solutions of the Ginzburg-Landau equation on a smooth bounded simply connected domain of , , where is a small parameter. We assume that the Ginzburg-Landau energy verifies the bound (natural in the context) , where is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of , as , is to establish uniform bounds for the gradient, for some . We review some recent techniques developed in the elliptic case in [7], discuss some variants, and extend the methods to the associated parabolic equation.
@article{COCV_2002__8__219_0, author = {Bethuel, F. and Orlandi, G.}, title = {Uniform estimates for the parabolic {Ginzburg-Landau} equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {219--238}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002026}, zbl = {1078.35013}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002026/} }
TY - JOUR AU - Bethuel, F. AU - Orlandi, G. TI - Uniform estimates for the parabolic Ginzburg-Landau equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 219 EP - 238 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002026/ DO - 10.1051/cocv:2002026 LA - en ID - COCV_2002__8__219_0 ER -
%0 Journal Article %A Bethuel, F. %A Orlandi, G. %T Uniform estimates for the parabolic Ginzburg-Landau equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 219-238 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002026/ %R 10.1051/cocv:2002026 %G en %F COCV_2002__8__219_0
Bethuel, F.; Orlandi, G. Uniform estimates for the parabolic Ginzburg-Landau equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 219-238. doi: 10.1051/cocv:2002026
Cité par Sources :