On a fourth order equation in 3-D
ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 1029-1042

Voir la notice de l'article provenant de la source Numdam

In this article we study the positivity of the 4-th order Paneitz operator for closed 3-manifolds. We prove that the connected sum of two such 3-manifold retains the same positivity property. We also solve the analogue of the Yamabe equation for such a manifold.

DOI : 10.1051/cocv:2002023
Classification : 53C21, 35G20
Keywords: Paneitz operator, conformal invariance, Sobolev inequality, connected sum
@article{COCV_2002__8__1029_0,
     author = {Xu, Xingwang and Yang, Paul C.},
     title = {On a fourth order equation in {3-D}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1029--1042},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     doi = {10.1051/cocv:2002023},
     mrnumber = {1932985},
     zbl = {1071.53526},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002023/}
}
TY  - JOUR
AU  - Xu, Xingwang
AU  - Yang, Paul C.
TI  - On a fourth order equation in 3-D
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 1029
EP  - 1042
VL  - 8
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002023/
DO  - 10.1051/cocv:2002023
LA  - en
ID  - COCV_2002__8__1029_0
ER  - 
%0 Journal Article
%A Xu, Xingwang
%A Yang, Paul C.
%T On a fourth order equation in 3-D
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 1029-1042
%V 8
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002023/
%R 10.1051/cocv:2002023
%G en
%F COCV_2002__8__1029_0
Xu, Xingwang; Yang, Paul C. On a fourth order equation in 3-D. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 1029-1042. doi: 10.1051/cocv:2002023

Cité par Sources :