Voir la notice de l'article provenant de la source Numdam
In this article we study the positivity of the 4-th order Paneitz operator for closed 3-manifolds. We prove that the connected sum of two such 3-manifold retains the same positivity property. We also solve the analogue of the Yamabe equation for such a manifold.
@article{COCV_2002__8__1029_0, author = {Xu, Xingwang and Yang, Paul C.}, title = {On a fourth order equation in {3-D}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1029--1042}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002023}, mrnumber = {1932985}, zbl = {1071.53526}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002023/} }
TY - JOUR AU - Xu, Xingwang AU - Yang, Paul C. TI - On a fourth order equation in 3-D JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 1029 EP - 1042 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002023/ DO - 10.1051/cocv:2002023 LA - en ID - COCV_2002__8__1029_0 ER -
%0 Journal Article %A Xu, Xingwang %A Yang, Paul C. %T On a fourth order equation in 3-D %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 1029-1042 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002023/ %R 10.1051/cocv:2002023 %G en %F COCV_2002__8__1029_0
Xu, Xingwang; Yang, Paul C. On a fourth order equation in 3-D. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 1029-1042. doi: 10.1051/cocv:2002023
Cité par Sources :