Voir la notice de l'article provenant de la source Numdam
We introduce an intrinsic notion of perimeter for subsets of a general Minkowski space ( a finite dimensional Banach space in which the norm is not required to be even). We prove that this notion of perimeter is equivalent to the usual definition of surface energy for crystals and we study the regularity properties of the minimizers and the quasi-minimizers of perimeter. In the two-dimensional case we obtain optimal regularity results: apart from a singular set (which is -negligible and is empty when the unit ball is neither a triangle nor a quadrilateral), we find that quasi-minimizers can be locally parameterized by means of a bi-lipschitz curve, while sets with prescribed bounded curvature are, locally, lipschitz graphs.
@article{COCV_2002__8__69_0, author = {Ambrosio, L. and Novaga, M. and Paolini, E.}, title = {Some regularity results for minimal crystals}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {69--103}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002018}, mrnumber = {1932945}, zbl = {1066.49021}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002018/} }
TY - JOUR AU - Ambrosio, L. AU - Novaga, M. AU - Paolini, E. TI - Some regularity results for minimal crystals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 69 EP - 103 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002018/ DO - 10.1051/cocv:2002018 LA - en ID - COCV_2002__8__69_0 ER -
%0 Journal Article %A Ambrosio, L. %A Novaga, M. %A Paolini, E. %T Some regularity results for minimal crystals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 69-103 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002018/ %R 10.1051/cocv:2002018 %G en %F COCV_2002__8__69_0
Ambrosio, L.; Novaga, M.; Paolini, E. Some regularity results for minimal crystals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 69-103. doi: 10.1051/cocv:2002018
Cité par Sources :