An example in the gradient theory of phase transitions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 285-289

Voir la notice de l'article provenant de la source Numdam

We prove by giving an example that when n3 the asymptotic behavior of functionals Ω ε| 2 u| 2 +(1-|u| 2 ) 2 /ε is quite different with respect to the planar case. In particular we show that the one-dimensional ansatz due to Aviles and Giga in the planar case (see [2]) is no longer true in higher dimensions.

DOI : 10.1051/cocv:2002012
Classification : 49J45, 74G65, 76M30
Keywords: phase transitions, $\Gamma $-convergence, asymptotic analysis, singular perturbation, Ginzburg-Landau
@article{COCV_2002__7__285_0,
     author = {Lellis, Camillo De},
     title = {An example in the gradient theory of phase transitions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {285--289},
     publisher = {EDP-Sciences},
     volume = {7},
     year = {2002},
     doi = {10.1051/cocv:2002012},
     mrnumber = {1925030},
     zbl = {1037.49010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002012/}
}
TY  - JOUR
AU  - Lellis, Camillo De
TI  - An example in the gradient theory of phase transitions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 285
EP  - 289
VL  - 7
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002012/
DO  - 10.1051/cocv:2002012
LA  - en
ID  - COCV_2002__7__285_0
ER  - 
%0 Journal Article
%A Lellis, Camillo De
%T An example in the gradient theory of phase transitions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 285-289
%V 7
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002012/
%R 10.1051/cocv:2002012
%G en
%F COCV_2002__7__285_0
Lellis, Camillo De. An example in the gradient theory of phase transitions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 285-289. doi: 10.1051/cocv:2002012

Cité par Sources :