Voir la notice de l'article provenant de la source Numdam
We prove by giving an example that when the asymptotic behavior of functionals is quite different with respect to the planar case. In particular we show that the one-dimensional ansatz due to Aviles and Giga in the planar case (see [2]) is no longer true in higher dimensions.
@article{COCV_2002__7__285_0, author = {Lellis, Camillo De}, title = {An example in the gradient theory of phase transitions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {285--289}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002012}, mrnumber = {1925030}, zbl = {1037.49010}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002012/} }
TY - JOUR AU - Lellis, Camillo De TI - An example in the gradient theory of phase transitions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 285 EP - 289 VL - 7 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002012/ DO - 10.1051/cocv:2002012 LA - en ID - COCV_2002__7__285_0 ER -
%0 Journal Article %A Lellis, Camillo De %T An example in the gradient theory of phase transitions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 285-289 %V 7 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002012/ %R 10.1051/cocv:2002012 %G en %F COCV_2002__7__285_0
Lellis, Camillo De. An example in the gradient theory of phase transitions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 285-289. doi : 10.1051/cocv:2002012. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002012/
[1] Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations 9 (1999) 327-355. | Zbl | MR
, and ,[2] A mathematical problem related to the physical theory of liquid crystal configurations. Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987) 1-16. | MR
and ,[3] On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 1-17. | Zbl
and ,[4] Energie di linea per campi di gradienti, Ba. D. Thesis. University of Pisa (1999).
,[5] A compactness result in the gradient theory of phase transition. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 833-844. | Zbl | MR
, , and ,[6] Compactness in Ginzburg-Landau energy by kinetic averaging. Comm. Pure Appl. Math. 54 (2001) 1096-1109. | Zbl
and ,[7] Singular perturbation and the energy of folds, Ph.D. Thesis. Courant Insitute, New York (1999).
,[8] Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000) 355-390. | Zbl | MR
and ,[9] The morphology and folding patterns of buckling driven thin-film blisters. J. Mech. Phys. Solids 42 (1994) 531-559. | Zbl | MR
and ,Cité par Sources :