Optimal control of a rotating body beam
ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 157-178

Voir la notice de l'article provenant de la source Numdam

In this paper we consider the problem of optimal control of the model for a rotating body beam, which describes the dynamics of motion of a beam attached perpendicularly to the center of a rigid cylinder and rotating with the cylinder. The control is applied on the cylinder via a torque to suppress the vibrations of the beam. We prove that there exists at least one optimal control and derive a necessary condition for the control. Furthermore, on the basis of iteration method, we propose numerical approximation scheme to calculate the optimal control and give numeric examples.

DOI : 10.1051/cocv:2002007
Classification : 49K20, 35L75, 74K10
Keywords: rotating body beam, optimal control, numerical approximation scheme
@article{COCV_2002__7__157_0,
     author = {Liu, Weijiu},
     title = {Optimal control of a rotating body beam},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {157--178},
     publisher = {EDP-Sciences},
     volume = {7},
     year = {2002},
     doi = {10.1051/cocv:2002007},
     mrnumber = {1925025},
     zbl = {1053.49023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002007/}
}
TY  - JOUR
AU  - Liu, Weijiu
TI  - Optimal control of a rotating body beam
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 157
EP  - 178
VL  - 7
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002007/
DO  - 10.1051/cocv:2002007
LA  - en
ID  - COCV_2002__7__157_0
ER  - 
%0 Journal Article
%A Liu, Weijiu
%T Optimal control of a rotating body beam
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 157-178
%V 7
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002007/
%R 10.1051/cocv:2002007
%G en
%F COCV_2002__7__157_0
Liu, Weijiu. Optimal control of a rotating body beam. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 157-178. doi: 10.1051/cocv:2002007

Cité par Sources :