Voir la notice de l'article provenant de la source Numdam
An optimal control problem is studied, in which the state is required to remain in a compact set . A control feedback law is constructed which, for given , produces -optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in . The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of and a related trajectory tracking result. The control feedback is shown to possess a robustness property with respect to state measurement error.
@article{COCV_2002__7__97_0, author = {Clarke, Francis H. and Rifford, Ludovic and Stern, R. J.}, title = {Feedback in state constrained optimal control}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {97--133}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002005}, mrnumber = {1925023}, zbl = {1033.49004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002005/} }
TY - JOUR AU - Clarke, Francis H. AU - Rifford, Ludovic AU - Stern, R. J. TI - Feedback in state constrained optimal control JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 97 EP - 133 VL - 7 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002005/ DO - 10.1051/cocv:2002005 LA - en ID - COCV_2002__7__97_0 ER -
%0 Journal Article %A Clarke, Francis H. %A Rifford, Ludovic %A Stern, R. J. %T Feedback in state constrained optimal control %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 97-133 %V 7 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002005/ %R 10.1051/cocv:2002005 %G en %F COCV_2002__7__97_0
Clarke, Francis H.; Rifford, Ludovic; Stern, R. J. Feedback in state constrained optimal control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 97-133. doi: 10.1051/cocv:2002005
Cité par Sources :