Voir la notice de l'article provenant de la source Numdam
We consider the problem of localizing an inaccessible piece of the boundary of a conducting medium , and a cavity contained in , from boundary measurements on the accessible part of . Assuming that is the given thermal flux for , and that the corresponding output datum is the temperature measured at a given time for , we prove that and are uniquely localized from knowledge of all possible pairs of input-output data . The same result holds when a mean value of the temperature is measured over a small interval of time.
@article{COCV_2002__7__1_0, author = {Canuto, Bruno}, title = {Unique localization of unknown boundaries in a conducting medium from boundary measurements}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1--22}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002001}, mrnumber = {1925019}, zbl = {1053.35128}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002001/} }
TY - JOUR AU - Canuto, Bruno TI - Unique localization of unknown boundaries in a conducting medium from boundary measurements JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 1 EP - 22 VL - 7 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002001/ DO - 10.1051/cocv:2002001 LA - en ID - COCV_2002__7__1_0 ER -
%0 Journal Article %A Canuto, Bruno %T Unique localization of unknown boundaries in a conducting medium from boundary measurements %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 1-22 %V 7 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002001/ %R 10.1051/cocv:2002001 %G en %F COCV_2002__7__1_0
Canuto, Bruno. Unique localization of unknown boundaries in a conducting medium from boundary measurements. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 1-22. doi: 10.1051/cocv:2002001
Cité par Sources :