Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1625-1644

Voir la notice de l'article provenant de la source Numdam

For 1 < p < , we consider the following problem Δ p u = f ( u ) , u > 0 in Ω , ν u = 0 on Ω

where Ω N is either a ball or an annulus. The nonlinearity f is possibly supercritical in the sense of Sobolev embeddings; in particular our assumptions allow to include the prototype nonlinearity f ( s ) = - s p - 1 + s q - 1 for every q > p . We use the shooting method to get existence and multiplicity of non-constant radial solutions. With the same technique, we also detect the oscillatory behavior of the solutions around the constant solution u 1 . In particular, we prove a conjecture proposed in [D. Bonheure, B. Noris and T. Weth, Ann. Inst. Henri Poincaré Anal. Non Linéaire 29 (2012) 573−588], that is to say, if p = 2 and f ' ( 1 ) > λ k + 1 rad , with λ k + 1 rad the ( k + 1 ) -th radial eigenvalue of the Neumann Laplacian, there exists a radial solution of the problem having exactly k intersections with u 1 , for a large class of nonlinearities.

DOI : 10.1051/cocv/2017074
Classification : 35J92, 35A24, 35B05, 35B09
Keywords: Quasilinear elliptic equations, Shooting method, Sobolev-supercritical nonlinearities, Neumann boundary, conditions

Boscaggin, Alberto 1 ; Colasuonno, Francesca 1 ; Noris, Benedetta 1

1
@article{COCV_2018__24_4_1625_0,
     author = {Boscaggin, Alberto and Colasuonno, Francesca and Noris, Benedetta},
     title = {Multiple positive solutions for a class of {p-Laplacian} {Neumann} problems without growth conditions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1625--1644},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017074},
     zbl = {1419.35072},
     mrnumber = {3922442},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017074/}
}
TY  - JOUR
AU  - Boscaggin, Alberto
AU  - Colasuonno, Francesca
AU  - Noris, Benedetta
TI  - Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1625
EP  - 1644
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017074/
DO  - 10.1051/cocv/2017074
LA  - en
ID  - COCV_2018__24_4_1625_0
ER  - 
%0 Journal Article
%A Boscaggin, Alberto
%A Colasuonno, Francesca
%A Noris, Benedetta
%T Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1625-1644
%V 24
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017074/
%R 10.1051/cocv/2017074
%G en
%F COCV_2018__24_4_1625_0
Boscaggin, Alberto; Colasuonno, Francesca; Noris, Benedetta. Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1625-1644. doi: 10.1051/cocv/2017074

Cité par Sources :