On two functionals involving the maximum of the torsion function
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1585-1604

Voir la notice de l'article provenant de la source Numdam

In this paper we investigate upper and lower bounds of two shape functionals involving the maximum of the torsion function. More precisely, we consider T ( Ω ) ( M ( Ω ) Ω ) and M ( Ω ) λ 1 ( Ω ) , where Ω is a bounded open set of d with finite Lebesgue measure Ω , M ( Ω ) denotes the maximum of the torsion function, T ( Ω ) the torsion, and λ 1 ( Ω ) the first Dirichlet eigenvalue. Particular attention is devoted to the subclass of convex sets.

DOI : 10.1051/cocv/2017069
Classification : 35P15, 49R05, 35J25, 35B27, 49Q10
Keywords: Torsional rigidity, first Dirichlet eigenvalue, shape optimization

Henrot, Antoine 1 ; Lucardesi, Ilaria 1 ; Philippin, Gérard 1

1
@article{COCV_2018__24_4_1585_0,
     author = {Henrot, Antoine and Lucardesi, Ilaria and Philippin, G\'erard},
     title = {On two functionals involving the maximum of the torsion function},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1585--1604},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017069},
     mrnumber = {3922448},
     zbl = {1442.35281},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017069/}
}
TY  - JOUR
AU  - Henrot, Antoine
AU  - Lucardesi, Ilaria
AU  - Philippin, Gérard
TI  - On two functionals involving the maximum of the torsion function
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1585
EP  - 1604
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017069/
DO  - 10.1051/cocv/2017069
LA  - en
ID  - COCV_2018__24_4_1585_0
ER  - 
%0 Journal Article
%A Henrot, Antoine
%A Lucardesi, Ilaria
%A Philippin, Gérard
%T On two functionals involving the maximum of the torsion function
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1585-1604
%V 24
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017069/
%R 10.1051/cocv/2017069
%G en
%F COCV_2018__24_4_1585_0
Henrot, Antoine; Lucardesi, Ilaria; Philippin, Gérard. On two functionals involving the maximum of the torsion function. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1585-1604. doi: 10.1051/cocv/2017069

Cité par Sources :