Voir la notice de l'article provenant de la source Numdam
In this paper we investigate upper and lower bounds of two shape functionals involving the maximum of the torsion function. More precisely, we consider and , where is a bounded open set of with finite Lebesgue measure denotes the maximum of the torsion function, the torsion, and the first Dirichlet eigenvalue. Particular attention is devoted to the subclass of convex sets.
Henrot, Antoine 1 ; Lucardesi, Ilaria 1 ; Philippin, Gérard 1
@article{COCV_2018__24_4_1585_0, author = {Henrot, Antoine and Lucardesi, Ilaria and Philippin, G\'erard}, title = {On two functionals involving the maximum of the torsion function}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1585--1604}, publisher = {EDP-Sciences}, volume = {24}, number = {4}, year = {2018}, doi = {10.1051/cocv/2017069}, mrnumber = {3922448}, zbl = {1442.35281}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017069/} }
TY - JOUR AU - Henrot, Antoine AU - Lucardesi, Ilaria AU - Philippin, Gérard TI - On two functionals involving the maximum of the torsion function JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1585 EP - 1604 VL - 24 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017069/ DO - 10.1051/cocv/2017069 LA - en ID - COCV_2018__24_4_1585_0 ER -
%0 Journal Article %A Henrot, Antoine %A Lucardesi, Ilaria %A Philippin, Gérard %T On two functionals involving the maximum of the torsion function %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1585-1604 %V 24 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017069/ %R 10.1051/cocv/2017069 %G en %F COCV_2018__24_4_1585_0
Henrot, Antoine; Lucardesi, Ilaria; Philippin, Gérard. On two functionals involving the maximum of the torsion function. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1585-1604. doi: 10.1051/cocv/2017069
Cité par Sources :