Voir la notice de l'article provenant de la source Numdam
We study the minimum problem for non sequentially weakly lower semicontinuos fucntionals of the form defined on Sobolev spaces, where the integrand is assumed to be non convex in the last variable. Denoting by the lower convex envelope of with respect to the last variable, we prove the existence of minimum points of assuming that the application is separately monotone with respect to each component of the vector and that the Hessian matrix of the application is diagonal. In the special case of functionals of sum type represented by integrands of the form , we assume that the separate monotonicity of the map , holds true in a neighbourhood of the (unique) minimizer of the relaxed functional and not necessarily on its whole domain.
Zagatti, Sandro 1
@article{COCV_2018__24_4_1333_0, author = {Zagatti, Sandro}, title = {Diagonal non-semicontinuous variational problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1333--1343}, publisher = {EDP-Sciences}, volume = {24}, number = {4}, year = {2018}, doi = {10.1051/cocv/2017068}, mrnumber = {3922447}, zbl = {1429.49018}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017068/} }
TY - JOUR AU - Zagatti, Sandro TI - Diagonal non-semicontinuous variational problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1333 EP - 1343 VL - 24 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017068/ DO - 10.1051/cocv/2017068 LA - en ID - COCV_2018__24_4_1333_0 ER -
%0 Journal Article %A Zagatti, Sandro %T Diagonal non-semicontinuous variational problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1333-1343 %V 24 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017068/ %R 10.1051/cocv/2017068 %G en %F COCV_2018__24_4_1333_0
Zagatti, Sandro. Diagonal non-semicontinuous variational problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1333-1343. doi: 10.1051/cocv/2017068
Cité par Sources :