Singular perturbations for a subelliptic operator
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1429-1451

Voir la notice de l'article provenant de la source Numdam

We study some classes of singular perturbation problems where the dynamics of the fast variables evolve in the whole space obeying to an infinitesimal operator which is subelliptic and ergodic. We prove that the corresponding ergodic problem admits a solution which is globally Lipschitz continuous and it has at most a logarithmic growth at infinity. The main result of this paper establishes that, as ϵ → 0, the value functions of the singular perturbation problems converge locally uniformly to the solution of an effective problem whose operator and terminal data are explicitly given in terms of the invariant measure for the ergodic operator.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017063
Classification : 35B25, 49L25, 35J70, 35H20, 35R03, 35B37, 93E20
Keywords: Subelliptic equations, Heisenberg group, invariant measure, singular perturbations, viscosity solutions, degenerate elliptic equations

Mannucci, Paola 1 ; Marchi, Claudio 1 ; Tchou, Nicoletta 1

1
@article{COCV_2018__24_4_1429_0,
     author = {Mannucci, Paola and Marchi, Claudio and Tchou, Nicoletta},
     title = {Singular perturbations for a subelliptic operator},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1429--1451},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017063},
     zbl = {1414.35019},
     mrnumber = {3922437},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017063/}
}
TY  - JOUR
AU  - Mannucci, Paola
AU  - Marchi, Claudio
AU  - Tchou, Nicoletta
TI  - Singular perturbations for a subelliptic operator
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1429
EP  - 1451
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017063/
DO  - 10.1051/cocv/2017063
LA  - en
ID  - COCV_2018__24_4_1429_0
ER  - 
%0 Journal Article
%A Mannucci, Paola
%A Marchi, Claudio
%A Tchou, Nicoletta
%T Singular perturbations for a subelliptic operator
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1429-1451
%V 24
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017063/
%R 10.1051/cocv/2017063
%G en
%F COCV_2018__24_4_1429_0
Mannucci, Paola; Marchi, Claudio; Tchou, Nicoletta. Singular perturbations for a subelliptic operator. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1429-1451. doi: 10.1051/cocv/2017063

Cité par Sources :