On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1345-1380

Voir la notice de l'article provenant de la source Numdam

We approximate an elliptic problem with oscillatory coefficients using a problem of the same type, but with constant coefficients. We deliberately take an engineering perspective, where the information on the oscillatory coefficients in the equation can be incomplete. A theoretical foundation of the approach in the limit of infinitely small oscillations of the coefficients is provided, using the classical theory of homogenization. We present a comprehensive study of the implementation aspects of our method, and a set of numerical tests and comparisons that show the potential practical interest of the approach. The approach detailed in this article improves on an earlier version briefly presented in [C. Le Bris, F. Legoll and K. Li, C.R. Acad. Sci. Paris, Série I  351 (2013) 265–270].

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017061
Classification : 35J, 35B27, 74Q15
Keywords: Elliptic PDEs, Oscillatory coefficients, Homogenization, Coarse-graining

Le Bris, Claude 1 ; Legoll, Frédéric 1 ; Lemaire, Simon 1

1
@article{COCV_2018__24_4_1345_0,
     author = {Le Bris, Claude and Legoll, Fr\'ed\'eric and Lemaire, Simon},
     title = {On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1345--1380},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017061},
     zbl = {1419.35020},
     mrnumber = {3922435},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017061/}
}
TY  - JOUR
AU  - Le Bris, Claude
AU  - Legoll, Frédéric
AU  - Lemaire, Simon
TI  - On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1345
EP  - 1380
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017061/
DO  - 10.1051/cocv/2017061
LA  - en
ID  - COCV_2018__24_4_1345_0
ER  - 
%0 Journal Article
%A Le Bris, Claude
%A Legoll, Frédéric
%A Lemaire, Simon
%T On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1345-1380
%V 24
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017061/
%R 10.1051/cocv/2017061
%G en
%F COCV_2018__24_4_1345_0
Le Bris, Claude; Legoll, Frédéric; Lemaire, Simon. On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1345-1380. doi: 10.1051/cocv/2017061

Cité par Sources :