Averaged time-optimal control problem in the space of positive Borel measures
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 721-740

Voir la notice de l'article provenant de la source Numdam

We introduce a time-optimal control theory in the space + ( d ) of positive and finite Borel measures. We prove some natural results, such as a dynamic programming principle, the existence of optimal trajectories, regularity results and an HJB equation for the value function in this infinite-dimensional setting. The main tool used in the superposition principle (by Ambrosio-Gigli-Savaré) which allows to represent the trajectory in the space of measures as weighted superposition of classical characteristic curves in d .

DOI : 10.1051/cocv/2017060
Classification : 34A60, 49J15
Keywords: Time-optimal control, dynamic programming, optimal transport, differential inclusions, multi-agent systems

Cavagnari, Giulia 1 ; Marigonda, Antonio 1 ; Piccoli, Benedetto 1

1
@article{COCV_2018__24_2_721_0,
     author = {Cavagnari, Giulia and Marigonda, Antonio and Piccoli, Benedetto},
     title = {Averaged time-optimal control problem in the space of positive {Borel} measures},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {721--740},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017060},
     mrnumber = {3816412},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017060/}
}
TY  - JOUR
AU  - Cavagnari, Giulia
AU  - Marigonda, Antonio
AU  - Piccoli, Benedetto
TI  - Averaged time-optimal control problem in the space of positive Borel measures
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 721
EP  - 740
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017060/
DO  - 10.1051/cocv/2017060
LA  - en
ID  - COCV_2018__24_2_721_0
ER  - 
%0 Journal Article
%A Cavagnari, Giulia
%A Marigonda, Antonio
%A Piccoli, Benedetto
%T Averaged time-optimal control problem in the space of positive Borel measures
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 721-740
%V 24
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017060/
%R 10.1051/cocv/2017060
%G en
%F COCV_2018__24_2_721_0
Cavagnari, Giulia; Marigonda, Antonio; Piccoli, Benedetto. Averaged time-optimal control problem in the space of positive Borel measures. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 721-740. doi: 10.1051/cocv/2017060

Cité par Sources :