Multipolar Hardy inequalities on Riemannian manifolds : Dedicated to Professor Enrique Zuazua on the occasion of his 55th birthday
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 551-567

Voir la notice de l'article provenant de la source Numdam

We prove multipolar Hardy inequalities on complete Riemannian manifolds, providing various curved counterparts of some Euclidean multipolar inequalities due to Cazacu and Zuazua [Improved multipolar Hardy inequalities, 2013]. We notice that our inequalities deeply depend on the curvature, providing (quantitative) information about the deflection from the flat case. By using these inequalities together with variational methods and group-theoretical arguments, we also establish non-existence, existence and multiplicity results for certain Schrödinger-type problems involving the Laplace-Beltrami operator and bipolar potentials on Cartan-Hadamard manifolds and on the open upper hemisphere, respectively.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017057
Classification : 53C21, 35J10, 35J20
Keywords: multipolar, Hardy inequality, Riemannian manifolds

Faraci, Francesca 1 ; Farkas, Csaba 1 ; Kristály, Alexandru 1

1
@article{COCV_2018__24_2_551_0,
     author = {Faraci, Francesca and Farkas, Csaba and Krist\'aly, Alexandru},
     title = {Multipolar {Hardy} inequalities on {Riemannian} manifolds},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {551--567},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017057},
     zbl = {1408.53052},
     mrnumber = {3816404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017057/}
}
TY  - JOUR
AU  - Faraci, Francesca
AU  - Farkas, Csaba
AU  - Kristály, Alexandru
TI  - Multipolar Hardy inequalities on Riemannian manifolds
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 551
EP  - 567
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017057/
DO  - 10.1051/cocv/2017057
LA  - en
ID  - COCV_2018__24_2_551_0
ER  - 
%0 Journal Article
%A Faraci, Francesca
%A Farkas, Csaba
%A Kristály, Alexandru
%T Multipolar Hardy inequalities on Riemannian manifolds
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 551-567
%V 24
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017057/
%R 10.1051/cocv/2017057
%G en
%F COCV_2018__24_2_551_0
Faraci, Francesca; Farkas, Csaba; Kristály, Alexandru. Multipolar Hardy inequalities on Riemannian manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 551-567. doi: 10.1051/cocv/2017057

Cité par Sources :