Voir la notice de l'article provenant de la source Numdam
In this paper, we first investigate the prox-regularity behaviour of solution mappings to generalized equations. This study is realized through a nonconvex uniform Robinson−Ursescu type theorem. Then, we derive new significant results for the preservation of prox-regularity under various and usual set operations. The role and applications of prox-regularity of solution sets of generalized equations are illustrated with dynamical systems with constraints.
Keywords: Variational analysis, prox-regular set, metric regularity, generalized equation, Robinson−Ursescu Theorem, variational inclusion, nonsmooth dynamics
Adly, Samir 1 ; Nacry, Florent 1 ; Thibault, Lionel 1
@article{COCV_2018__24_2_677_0,
author = {Adly, Samir and Nacry, Florent and Thibault, Lionel},
title = {Prox-regularity approach to generalized equations and image projection},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {677--708},
publisher = {EDP-Sciences},
volume = {24},
number = {2},
year = {2018},
doi = {10.1051/cocv/2017052},
mrnumber = {3816410},
zbl = {1409.49014},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017052/}
}
TY - JOUR AU - Adly, Samir AU - Nacry, Florent AU - Thibault, Lionel TI - Prox-regularity approach to generalized equations and image projection JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 677 EP - 708 VL - 24 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017052/ DO - 10.1051/cocv/2017052 LA - en ID - COCV_2018__24_2_677_0 ER -
%0 Journal Article %A Adly, Samir %A Nacry, Florent %A Thibault, Lionel %T Prox-regularity approach to generalized equations and image projection %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 677-708 %V 24 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017052/ %R 10.1051/cocv/2017052 %G en %F COCV_2018__24_2_677_0
Adly, Samir; Nacry, Florent; Thibault, Lionel. Prox-regularity approach to generalized equations and image projection. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 677-708. doi: 10.1051/cocv/2017052
Cité par Sources :
