Regularization and discretization error estimates for optimal control of ODEs with group sparsity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 811-834

Voir la notice de l'article provenant de la source Numdam

It is well known that optimal control problems with L1-control costs produce sparse solutions, i.e., the optimal control is zero on whole intervals. In this paper, we study a general class of convex linear-quadratic optimal control problems with a sparsity functional that promotes a so-called group sparsity structure of the optimal controls. In this case, the components of the control function take the value of zero on parts of the time interval, simultaneously. These problems are both theoretically interesting and practically relevant. After obtaining results about the structure of the optimal controls, we derive stability estimates for the solution of the problem w.r.t. perturbations and L2-regularization. These results are consequently applied to prove convergence of the Euler discretization. Finally, the usefulness of our approach is demonstrated by solving an illustrative example using a semismooth Newton method.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017049
Classification : 49K15, 49J15, 49M15, 49M25, 65K15
Keywords: Optimal control, group sparsity, directional sparsity, bang-bang principle, stability analysis, discretization error estimates

Schneider, Christopher 1 ; Wachsmuth, Gerd 1

1
@article{COCV_2018__24_2_811_0,
     author = {Schneider, Christopher and Wachsmuth, Gerd},
     title = {Regularization and discretization error estimates for optimal control of {ODEs} with group sparsity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {811--834},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017049},
     zbl = {1402.49019},
     mrnumber = {3816416},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017049/}
}
TY  - JOUR
AU  - Schneider, Christopher
AU  - Wachsmuth, Gerd
TI  - Regularization and discretization error estimates for optimal control of ODEs with group sparsity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 811
EP  - 834
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017049/
DO  - 10.1051/cocv/2017049
LA  - en
ID  - COCV_2018__24_2_811_0
ER  - 
%0 Journal Article
%A Schneider, Christopher
%A Wachsmuth, Gerd
%T Regularization and discretization error estimates for optimal control of ODEs with group sparsity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 811-834
%V 24
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017049/
%R 10.1051/cocv/2017049
%G en
%F COCV_2018__24_2_811_0
Schneider, Christopher; Wachsmuth, Gerd. Regularization and discretization error estimates for optimal control of ODEs with group sparsity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 811-834. doi: 10.1051/cocv/2017049

Cité par Sources :