Voir la notice de l'article provenant de la source Numdam
An optimal rearrangement problem in a cylindrical domain is considered, under the constraint that the force function does not depend on the variable of the cylindrical axis. This leads to a new type of obstacle problem in the cylindrical domain
arising from minimization of the functional
where is the exterior normal derivative of at the boundary. Several existence and regularity results are proven and it is shown that the comparison principle does not hold for minimizers.
Mikayelyan, Hayk 1
@article{COCV_2018__24_2_859_0, author = {Mikayelyan, Hayk}, title = {Cylindrical optimal rearrangement problem leading to a new type obstacle problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {859--872}, publisher = {EDP-Sciences}, volume = {24}, number = {2}, year = {2018}, doi = {10.1051/cocv/2017047}, zbl = {1402.49007}, mrnumber = {3816419}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017047/} }
TY - JOUR AU - Mikayelyan, Hayk TI - Cylindrical optimal rearrangement problem leading to a new type obstacle problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 859 EP - 872 VL - 24 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017047/ DO - 10.1051/cocv/2017047 LA - en ID - COCV_2018__24_2_859_0 ER -
%0 Journal Article %A Mikayelyan, Hayk %T Cylindrical optimal rearrangement problem leading to a new type obstacle problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 859-872 %V 24 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017047/ %R 10.1051/cocv/2017047 %G en %F COCV_2018__24_2_859_0
Mikayelyan, Hayk. Cylindrical optimal rearrangement problem leading to a new type obstacle problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 859-872. doi: 10.1051/cocv/2017047
Cité par Sources :