Linear quadratic mean field game with control input constraint
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 901-919

Voir la notice de l'article provenant de la source Numdam

In this paper, we study a class of linear-quadratic (LQ) mean-field games in which the individual control process is constrained in a closed convex subset Γ of full space m . The decentralized strategies and consistency condition are represented by a class of mean-field forward-backward stochastic differential equation (MF-FBSDE) with projection operators on Γ . The wellposedness of consistency condition system is obtained using the monotonicity condition method. The related -Nash equilibrium property is also verified.

DOI : 10.1051/cocv/2017038
Classification : 60H10, 60H30, 91A10, 91A25, 93E20
Keywords: ϵ-Nash equilibrium, mean-field forward-backward stochastic differential equation (MF-FBSDE), linear-quadratic constrained control, projection, monotonic condition

Hu, Ying 1 ; Huang, Jianhui 1 ; Li, Xun 1

1
@article{COCV_2018__24_2_901_0,
     author = {Hu, Ying and Huang, Jianhui and Li, Xun},
     title = {Linear quadratic mean field game with control input constraint},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {901--919},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017038},
     mrnumber = {3816421},
     zbl = {1432.49048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017038/}
}
TY  - JOUR
AU  - Hu, Ying
AU  - Huang, Jianhui
AU  - Li, Xun
TI  - Linear quadratic mean field game with control input constraint
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 901
EP  - 919
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017038/
DO  - 10.1051/cocv/2017038
LA  - en
ID  - COCV_2018__24_2_901_0
ER  - 
%0 Journal Article
%A Hu, Ying
%A Huang, Jianhui
%A Li, Xun
%T Linear quadratic mean field game with control input constraint
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 901-919
%V 24
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017038/
%R 10.1051/cocv/2017038
%G en
%F COCV_2018__24_2_901_0
Hu, Ying; Huang, Jianhui; Li, Xun. Linear quadratic mean field game with control input constraint. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 901-919. doi: 10.1051/cocv/2017038

Cité par Sources :