Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1249-1273

Voir la notice de l'article provenant de la source Numdam

In this paper, we investigatve the existence of solutions for critical Schrödinger–Kirchhoff type systems drien by nonlocal integro–differential operators. As a particular case, we consider the following system:

M ( [ ( u , v ) ] s , p p + ( u , v ) p , V p ) ( ( - Δ ) p s u + V ( x ) u p - 2 u ) = λ H u ( x , u , v ) + α p s * v β u α - 2 u in N M ( [ ( u , v ) ] s , p p + ( u , v ) p , V p ) ( ( - Δ ) p s v + V ( x ) u p - 2 u ) = λ H v ( x , u , v ) + β p s * u α v β - 2 v in N

where ( Δ ) p s is the fractional p –Laplace operator with 0 < s < 1 < p < N / s , α , β > 1 with α + β = p s * , M : 0 + 0 + is a continuous function, V : N + is a continuous function, λ > 0 is a real parameter. By applying the mountain pass theorem and Ekeland’s variational principle, we obtain the existence and asymptotic behaviour of solutions for the above systems under some suitable assumptions. A distinguished feature of this paper is that the above systems are degenerate, that is, the Kirchhoff function could vanish at zero. To the best of our knowledge, this is the first time to exploit the existence of solutions for fractional Schrödinger–Kirchhoff systems involving critical nonlinearities in N .

DOI : 10.1051/cocv/2017036
Classification : 35D30, 35R11, 35A15, 47G20
Keywords: Integro–differential operator, Schrödinger–Kirhhoff system, critical nonlinearity, variational methods

Mingqi, Xiang 1 ; Rădulescu, Vicenţiu D. 1 ; Zhang, Binlin 1

1
@article{COCV_2018__24_3_1249_0,
     author = {Mingqi, Xiang and R\u{a}dulescu, Vicen\c{t}iu D. and Zhang, Binlin},
     title = {Combined effects for fractional {Schr\"odinger{\textendash}Kirchhoff} systems with critical nonlinearities},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1249--1273},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {3},
     year = {2018},
     doi = {10.1051/cocv/2017036},
     zbl = {1453.35184},
     mrnumber = {3877201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017036/}
}
TY  - JOUR
AU  - Mingqi, Xiang
AU  - Rădulescu, Vicenţiu D.
AU  - Zhang, Binlin
TI  - Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1249
EP  - 1273
VL  - 24
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017036/
DO  - 10.1051/cocv/2017036
LA  - en
ID  - COCV_2018__24_3_1249_0
ER  - 
%0 Journal Article
%A Mingqi, Xiang
%A Rădulescu, Vicenţiu D.
%A Zhang, Binlin
%T Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1249-1273
%V 24
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017036/
%R 10.1051/cocv/2017036
%G en
%F COCV_2018__24_3_1249_0
Mingqi, Xiang; Rădulescu, Vicenţiu D.; Zhang, Binlin. Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1249-1273. doi: 10.1051/cocv/2017036

Cité par Sources :