Distance estimates for state constrained trajectories of infinite dimensional differential inclusions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1207-1229

Voir la notice de l'article provenant de la source Numdam

This paper concerns estimates on the distance between a trajectory of a differential inclusion and the set of feasible trajectories of the same inclusion, feasible meaning confined to a given set of constraints. We apply these estimates to investigate Lipschitz continuity of the value functions arising in optimal control, and to variational inclusions, useful for proving non degenerate necessary optimality conditions. The main feature of our analysis is the infinite dimensional framework, which can be applied to models involving PDEs.

DOI : 10.1051/cocv/2017032
Classification : 34A60, 35Q93, 46N20, 47J22, 47N70, 93C23
Keywords: Semilinear differential inclusion, state constraint, neighboring feasible trajectory theorem

Frankowska, Helene 1 ; Marchini, Elsa M. 1 ; Mazzola, Marco 1

1
@article{COCV_2018__24_3_1207_0,
     author = {Frankowska, Helene and Marchini, Elsa M. and Mazzola, Marco},
     title = {Distance estimates for state constrained trajectories of infinite dimensional differential inclusions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1207--1229},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {3},
     year = {2018},
     doi = {10.1051/cocv/2017032},
     mrnumber = {3877199},
     zbl = {1412.34192},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017032/}
}
TY  - JOUR
AU  - Frankowska, Helene
AU  - Marchini, Elsa M.
AU  - Mazzola, Marco
TI  - Distance estimates for state constrained trajectories of infinite dimensional differential inclusions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1207
EP  - 1229
VL  - 24
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017032/
DO  - 10.1051/cocv/2017032
LA  - en
ID  - COCV_2018__24_3_1207_0
ER  - 
%0 Journal Article
%A Frankowska, Helene
%A Marchini, Elsa M.
%A Mazzola, Marco
%T Distance estimates for state constrained trajectories of infinite dimensional differential inclusions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1207-1229
%V 24
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017032/
%R 10.1051/cocv/2017032
%G en
%F COCV_2018__24_3_1207_0
Frankowska, Helene; Marchini, Elsa M.; Mazzola, Marco. Distance estimates for state constrained trajectories of infinite dimensional differential inclusions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1207-1229. doi: 10.1051/cocv/2017032

Cité par Sources :