On a decomposition of regular domains into John domains with uniform constants
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1541-1583

Voir la notice de l'article provenant de la source Numdam

We derive a decomposition result for regular, two-dimensional domains into John domains with uniform constants. We prove that for every simply connected domain Ω 2 with C 1 -boundary there is a corresponding partition Ω = Ω 1 ... Ω N with Σ j = 1 N 1 ( Ω j Ω ) θ such that each component is a John domain with a John constant only depending on θ . The result implies that many inequalities in Sobolev spaces such as Poincaré’s or Korn’s inequality hold on the partition of Ω for uniform constants, which are independent of $\Omega$.

DOI : 10.1051/cocv/2017029
Classification : 26D10, 70G75, 46E35
Keywords: John domains, Korn’s inequality, free discontinuity problems, shape optimization problems

Friedrich, Manuel 1

1
@article{COCV_2018__24_4_1541_0,
     author = {Friedrich, Manuel},
     title = {On a decomposition of regular domains into {John} domains with uniform constants},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1541--1583},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017029},
     zbl = {1414.26032},
     mrnumber = {3922431},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017029/}
}
TY  - JOUR
AU  - Friedrich, Manuel
TI  - On a decomposition of regular domains into John domains with uniform constants
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1541
EP  - 1583
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017029/
DO  - 10.1051/cocv/2017029
LA  - en
ID  - COCV_2018__24_4_1541_0
ER  - 
%0 Journal Article
%A Friedrich, Manuel
%T On a decomposition of regular domains into John domains with uniform constants
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1541-1583
%V 24
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017029/
%R 10.1051/cocv/2017029
%G en
%F COCV_2018__24_4_1541_0
Friedrich, Manuel. On a decomposition of regular domains into John domains with uniform constants. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1541-1583. doi: 10.1051/cocv/2017029

Cité par Sources :