On the horseshoe conjecture for maximal distance minimizers
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1015-1041

Voir la notice de l'article provenant de la source Numdam

We study the properties of sets  Σ having the minimal length (one-dimensional Hausdorff measure) over the class of closed connected sets Σ 2 satisfying the inequality satisfying the inequality max y M dist ( y , Σ ) r for a given compact set M 2 and some given r > 0 . Such sets play the role of shortest possible pipelines arriving at a distance at most  r to every point of M , where  M is the set of customers of the pipeline. We describe the set of minimizers for  M a circumference of radius  R > 0   for the case when r < R 4 . 98 , thus proving the conjecture of Miranda, Paolini and Stepanov for this particular case. Moreover we show that when  M is the boundary of a smooth convex set with minimal radius of curvature R , then every minimizer  Σ has similar structure for r < R / 5 . Additionaly, we prove a similar statement for local minimizers.

DOI : 10.1051/cocv/2017025
Classification : 49Q10, 49Q20, 49K30, 90B10, 90C27
Keywords: Steiner tree, locally minimal network, maximal distance minimizer

Cherkashin, Danila 1 ; Teplitskaya, Yana 1

1
@article{COCV_2018__24_3_1015_0,
     author = {Cherkashin, Danila and Teplitskaya, Yana},
     title = {On the horseshoe conjecture for maximal distance minimizers},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1015--1041},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {3},
     year = {2018},
     doi = {10.1051/cocv/2017025},
     mrnumber = {3877191},
     zbl = {1405.49031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017025/}
}
TY  - JOUR
AU  - Cherkashin, Danila
AU  - Teplitskaya, Yana
TI  - On the horseshoe conjecture for maximal distance minimizers
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1015
EP  - 1041
VL  - 24
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017025/
DO  - 10.1051/cocv/2017025
LA  - en
ID  - COCV_2018__24_3_1015_0
ER  - 
%0 Journal Article
%A Cherkashin, Danila
%A Teplitskaya, Yana
%T On the horseshoe conjecture for maximal distance minimizers
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1015-1041
%V 24
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017025/
%R 10.1051/cocv/2017025
%G en
%F COCV_2018__24_3_1015_0
Cherkashin, Danila; Teplitskaya, Yana. On the horseshoe conjecture for maximal distance minimizers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1015-1041. doi: 10.1051/cocv/2017025

Cité par Sources :