Voir la notice de l'article provenant de la source Numdam
We study the properties of sets having the minimal length (one-dimensional Hausdorff measure) over the class of closed connected sets satisfying the inequality satisfying the inequality for a given compact set and some given . Such sets play the role of shortest possible pipelines arriving at a distance at most to every point of , where is the set of customers of the pipeline. We describe the set of minimizers for a circumference of radius for the case when , thus proving the conjecture of Miranda, Paolini and Stepanov for this particular case. Moreover we show that when is the boundary of a smooth convex set with minimal radius of curvature , then every minimizer has similar structure for . Additionaly, we prove a similar statement for local minimizers.
Keywords: Steiner tree, locally minimal network, maximal distance minimizer
Cherkashin, Danila 1 ; Teplitskaya, Yana 1
@article{COCV_2018__24_3_1015_0,
author = {Cherkashin, Danila and Teplitskaya, Yana},
title = {On the horseshoe conjecture for maximal distance minimizers},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1015--1041},
publisher = {EDP-Sciences},
volume = {24},
number = {3},
year = {2018},
doi = {10.1051/cocv/2017025},
mrnumber = {3877191},
zbl = {1405.49031},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017025/}
}
TY - JOUR AU - Cherkashin, Danila AU - Teplitskaya, Yana TI - On the horseshoe conjecture for maximal distance minimizers JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1015 EP - 1041 VL - 24 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017025/ DO - 10.1051/cocv/2017025 LA - en ID - COCV_2018__24_3_1015_0 ER -
%0 Journal Article %A Cherkashin, Danila %A Teplitskaya, Yana %T On the horseshoe conjecture for maximal distance minimizers %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1015-1041 %V 24 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017025/ %R 10.1051/cocv/2017025 %G en %F COCV_2018__24_3_1015_0
Cherkashin, Danila; Teplitskaya, Yana. On the horseshoe conjecture for maximal distance minimizers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1015-1041. doi: 10.1051/cocv/2017025
Cité par Sources :