Voir la notice de l'article provenant de la source Numdam
Following some ideas of a recent paper by Bourgain, Brezis and Mironescu, we give a representation formula of the norm of the gradient of a Sobolev function which does not make use of the distributional derivatives.
Fusco, Nicola 1 ; Moscariello, Gioconda 1 ; Sbordone, Carlo 1
@article{COCV_2018__24_2_835_0, author = {Fusco, Nicola and Moscariello, Gioconda and Sbordone, Carlo}, title = {BMO-type seminorms and {Sobolev} functions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {835--847}, publisher = {EDP-Sciences}, volume = {24}, number = {2}, year = {2018}, doi = {10.1051/cocv/2017023}, zbl = {1410.46021}, mrnumber = {3816417}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017023/} }
TY - JOUR AU - Fusco, Nicola AU - Moscariello, Gioconda AU - Sbordone, Carlo TI - BMO-type seminorms and Sobolev functions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 835 EP - 847 VL - 24 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017023/ DO - 10.1051/cocv/2017023 LA - en ID - COCV_2018__24_2_835_0 ER -
%0 Journal Article %A Fusco, Nicola %A Moscariello, Gioconda %A Sbordone, Carlo %T BMO-type seminorms and Sobolev functions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 835-847 %V 24 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017023/ %R 10.1051/cocv/2017023 %G en %F COCV_2018__24_2_835_0
Fusco, Nicola; Moscariello, Gioconda; Sbordone, Carlo. BMO-type seminorms and Sobolev functions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 835-847. doi: 10.1051/cocv/2017023
Cité par Sources :