BMO-type seminorms and Sobolev functions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 835-847

Voir la notice de l'article provenant de la source Numdam

Following some ideas of a recent paper by Bourgain, Brezis and Mironescu, we give a representation formula of the norm of the gradient of a Sobolev function which does not make use of the distributional derivatives.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017023
Classification : 46E35
Keywords: Sobolev functions, Nikol’skij spaces, BMO-type seminorms

Fusco, Nicola 1 ; Moscariello, Gioconda 1 ; Sbordone, Carlo 1

1
@article{COCV_2018__24_2_835_0,
     author = {Fusco, Nicola and Moscariello, Gioconda and Sbordone, Carlo},
     title = {BMO-type seminorms and {Sobolev} functions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {835--847},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017023},
     zbl = {1410.46021},
     mrnumber = {3816417},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017023/}
}
TY  - JOUR
AU  - Fusco, Nicola
AU  - Moscariello, Gioconda
AU  - Sbordone, Carlo
TI  - BMO-type seminorms and Sobolev functions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 835
EP  - 847
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017023/
DO  - 10.1051/cocv/2017023
LA  - en
ID  - COCV_2018__24_2_835_0
ER  - 
%0 Journal Article
%A Fusco, Nicola
%A Moscariello, Gioconda
%A Sbordone, Carlo
%T BMO-type seminorms and Sobolev functions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 835-847
%V 24
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017023/
%R 10.1051/cocv/2017023
%G en
%F COCV_2018__24_2_835_0
Fusco, Nicola; Moscariello, Gioconda; Sbordone, Carlo. BMO-type seminorms and Sobolev functions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 835-847. doi: 10.1051/cocv/2017023

Cité par Sources :