Voir la notice de l'article provenant de la source Numdam
The mathematical framework of hybrid system is a recent and general tool to treat control systems involving control action of heterogeneous nature. In this paper, we construct and test a semi-Lagrangian numerical scheme for solving the Dynamic Programming equation of an infinite horizon optimal control problem for hybrid systems. In order to speed up convergence, we also propose and analyze an acceleration technique based on policy iteration. Finally, we validate the approach via some numerical tests in low dimension.
Ferretti, Roberto 1 ; Sassi, Achille 1
@article{COCV_2018__24_3_965_0, author = {Ferretti, Roberto and Sassi, Achille}, title = {A {semi-Lagrangian} algorithm in policy space for hybrid optimal control problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {965--983}, publisher = {EDP-Sciences}, volume = {24}, number = {3}, year = {2018}, doi = {10.1051/cocv/2017022}, mrnumber = {3877189}, zbl = {1405.49024}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017022/} }
TY - JOUR AU - Ferretti, Roberto AU - Sassi, Achille TI - A semi-Lagrangian algorithm in policy space for hybrid optimal control problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 965 EP - 983 VL - 24 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017022/ DO - 10.1051/cocv/2017022 LA - en ID - COCV_2018__24_3_965_0 ER -
%0 Journal Article %A Ferretti, Roberto %A Sassi, Achille %T A semi-Lagrangian algorithm in policy space for hybrid optimal control problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 965-983 %V 24 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017022/ %R 10.1051/cocv/2017022 %G en %F COCV_2018__24_3_965_0
Ferretti, Roberto; Sassi, Achille. A semi-Lagrangian algorithm in policy space for hybrid optimal control problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 965-983. doi : 10.1051/cocv/2017022. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017022/
[1] Convergence of approximation schemes for fully nonlinear second-order equations. Asymptotic Anal. 4 (1991) 271–283 | MR | Zbl
and ,[2] Dynamic Programming. Princeton University Press, Princeton NJ (1957) | MR | Zbl
,[3] Some convergence results for Howard’s algorithm. SIAM J. Numer. Anal. 47 (2009) 3001–3026 | MR | Zbl | DOI
, and ,[4] A unified framework for hybrid control problem. IEEE Trans. Autom. Control 43 (1998) 31–45 | MR | Zbl | DOI
, and ,[5] Hybrid feedback control methods for robust and global power conversion. IFAC–PapersOnLine 48 (2015) 298–303
and ,[6] Hybrid control system and viscosity solutions. SIAM J. Control Optimiz. 34 (2005), 1259–1288 | MR | Zbl | DOI
and ,[7] Semi-Lagrangian approximation schemes for linear and Hamilton–Jacobi equations. SIAM, Philadelphia (2013) | MR | DOI
and ,[8] Monotone numerical schemes and feedback construction for hybrid control systems. J. Optimiz. Theory Appl. 165 (2014) 507–531 | MR | Zbl | DOI
and ,[9] Dynamic Programming and Markov processes. MIT Press, Cambridge MA (1960) | MR | Zbl
,[10] Optimal bang–bang control for a two-compartment model in cancer chemotherapy. J. Optimiz. Theory Appl. 114 (2002) 609–637 | MR | Zbl | DOI
and ,[11] On the convergence of policy iteration in stationary dynamic programming. Math. Oper. Res. 4 (1979) 60–69 | MR | Zbl | DOI
and ,[12] Modified policy iteration algorithms for discounted Markov decision problems. Manag. Sci. 24 (1978) 1127–1137 | MR | Zbl | DOI
and ,[13] Convergence properties of policy iteration. SIAM J. Control Optimiz. 42 (2004) 2094–2115 | MR | Zbl | DOI
and ,[14] Tecniche di Programmazione Dinamica nell’ottimizzazione di sistemi di controllo ibridi. MSc Thesis, Università Roma Tre (2013)
,Cité par Sources :