Summability estimates on transport densities with Dirichlet regions on the boundary via symmetrization techniques
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1167-1180

Voir la notice de l'article provenant de la source Numdam

In this paper we consider the mass transportation problem in a bounded domain  Ω where a positive mass  f + in the interior is sent to the boundary Ω . This problems appears, for instance in some shape optimization issues. We prove summability estimates on the associated transport density σ , which is the transport density from a diffuse measure to a measure on the boundary  f - = P # f + ( P being the projection on the bundary), hence singular. Via a symmetrization trick, as soon as  Ω is convex or satisfies a uniform exterior ball condition, we prove L p estimates (if f + L p then σ L p ). Finally, by a counter-example we prove that if  f + L ( Ω ) and f - has bounded density w.r.t. the surface measure on Ω , the transport density  σ between  f + and  f - is not necessarily in L ( Ω ) , which means that the fact that  f - = P # f + is crucial.

DOI : 10.1051/cocv/2017018
Classification : 49J45, 35R06
Keywords: optimal transport, Monge-Kantorovich system, transport density, symmetrization

Dweik, Samer 1 ; Santambrogio, Filippo 1

1
@article{COCV_2018__24_3_1167_0,
     author = {Dweik, Samer and Santambrogio, Filippo},
     title = {Summability estimates on transport densities with {Dirichlet} regions on the boundary via symmetrization techniques},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1167--1180},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {3},
     year = {2018},
     doi = {10.1051/cocv/2017018},
     mrnumber = {3877197},
     zbl = {1405.49036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017018/}
}
TY  - JOUR
AU  - Dweik, Samer
AU  - Santambrogio, Filippo
TI  - Summability estimates on transport densities with Dirichlet regions on the boundary via symmetrization techniques
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1167
EP  - 1180
VL  - 24
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017018/
DO  - 10.1051/cocv/2017018
LA  - en
ID  - COCV_2018__24_3_1167_0
ER  - 
%0 Journal Article
%A Dweik, Samer
%A Santambrogio, Filippo
%T Summability estimates on transport densities with Dirichlet regions on the boundary via symmetrization techniques
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1167-1180
%V 24
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017018/
%R 10.1051/cocv/2017018
%G en
%F COCV_2018__24_3_1167_0
Dweik, Samer; Santambrogio, Filippo. Summability estimates on transport densities with Dirichlet regions on the boundary via symmetrization techniques. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1167-1180. doi: 10.1051/cocv/2017018

Cité par Sources :