Occupational measures and averaged shape optimization
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1141-1165

Voir la notice de l'article provenant de la source Numdam

We consider the minimization of averaged shape optimization problems over the class of sets of finite perimeter. We use occupational measures, which are probability measures defined in terms of the reduced boundary of sets of finite perimeter, that allow to transform the minimization into a linear problem on a set of measures. The averaged nature of the problem allows the optimal value to be approximated with sets with unbounded perimeter. In this case, we show that we can also approximate the optimal value with convex polytopes with n+1 faces shrinking to a point. We derive conditions under which we show the existence of minimizers and we also analyze the appropriate spaces in which to study the problem.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017017
Classification : 49Q20, 49Q10, 28A33
Keywords: Shape optimization, occupational measures, sets of finite perimeter, Cheeger sets

Bright, Ido 1 ; Li, Qinfeng 1 ; Torres, Monica 1

1
@article{COCV_2018__24_3_1141_0,
     author = {Bright, Ido and Li, Qinfeng and Torres, Monica},
     title = {Occupational measures and averaged shape optimization},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1141--1165},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {3},
     year = {2018},
     doi = {10.1051/cocv/2017017},
     zbl = {1405.49030},
     mrnumber = {3877196},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017017/}
}
TY  - JOUR
AU  - Bright, Ido
AU  - Li, Qinfeng
AU  - Torres, Monica
TI  - Occupational measures and averaged shape optimization
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1141
EP  - 1165
VL  - 24
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017017/
DO  - 10.1051/cocv/2017017
LA  - en
ID  - COCV_2018__24_3_1141_0
ER  - 
%0 Journal Article
%A Bright, Ido
%A Li, Qinfeng
%A Torres, Monica
%T Occupational measures and averaged shape optimization
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1141-1165
%V 24
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017017/
%R 10.1051/cocv/2017017
%G en
%F COCV_2018__24_3_1141_0
Bright, Ido; Li, Qinfeng; Torres, Monica. Occupational measures and averaged shape optimization. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1141-1165. doi: 10.1051/cocv/2017017

Cité par Sources :