Stochastic homogenization of plasticity equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 153-176

Voir la notice de l'article provenant de la source Numdam

In the context of infinitesimal strain plasticity with hardening, we derive a stochastic homogenization result. We assume that the coefficients of the equation are random functions: elasticity tensor, hardening parameter and flow-rule function are given through a dynamical system on a probability space. A parameter ε>0 denotes the typical length scale of oscillations. We derive effective equations that describe the behavior of solutions in the limit ε0. The homogenization procedure is based on the fact that stochastic coefficients “allow averaging”: For one representative volume element, a strain evolution [0,T]tξ(t) induces a stress evolution [0,T]tΣ(ξ)(t). Once the hysteretic evolution law Σ is justified for averages, we obtain that the macroscopic limit equation is given by -·Σ( s u)=f.

DOI : 10.1051/cocv/2017015
Classification : 74C05, 35R60, 74Q10
Keywords: Small strain plasticity, stochastic homogenization

Heida, Martin 1 ; Schweizer, Ben 2

1 Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin, Germany.
2 TU Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, 44227 Dortmund, Germany.
@article{COCV_2018__24_1_153_0,
     author = {Heida, Martin and Schweizer, Ben},
     title = {Stochastic homogenization of plasticity equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {153--176},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {1},
     year = {2018},
     doi = {10.1051/cocv/2017015},
     mrnumber = {3764138},
     zbl = {1393.74014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017015/}
}
TY  - JOUR
AU  - Heida, Martin
AU  - Schweizer, Ben
TI  - Stochastic homogenization of plasticity equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 153
EP  - 176
VL  - 24
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017015/
DO  - 10.1051/cocv/2017015
LA  - en
ID  - COCV_2018__24_1_153_0
ER  - 
%0 Journal Article
%A Heida, Martin
%A Schweizer, Ben
%T Stochastic homogenization of plasticity equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 153-176
%V 24
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017015/
%R 10.1051/cocv/2017015
%G en
%F COCV_2018__24_1_153_0
Heida, Martin; Schweizer, Ben. Stochastic homogenization of plasticity equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 153-176. doi: 10.1051/cocv/2017015

Cité par Sources :