Voir la notice de l'article provenant de la source Numdam
In the context of infinitesimal strain plasticity with hardening, we derive a stochastic homogenization result. We assume that the coefficients of the equation are random functions: elasticity tensor, hardening parameter and flow-rule function are given through a dynamical system on a probability space. A parameter denotes the typical length scale of oscillations. We derive effective equations that describe the behavior of solutions in the limit . The homogenization procedure is based on the fact that stochastic coefficients “allow averaging”: For one representative volume element, a strain evolution induces a stress evolution . Once the hysteretic evolution law is justified for averages, we obtain that the macroscopic limit equation is given by .
Heida, Martin 1 ; Schweizer, Ben 2
@article{COCV_2018__24_1_153_0, author = {Heida, Martin and Schweizer, Ben}, title = {Stochastic homogenization of plasticity equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {153--176}, publisher = {EDP-Sciences}, volume = {24}, number = {1}, year = {2018}, doi = {10.1051/cocv/2017015}, mrnumber = {3764138}, zbl = {1393.74014}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017015/} }
TY - JOUR AU - Heida, Martin AU - Schweizer, Ben TI - Stochastic homogenization of plasticity equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 153 EP - 176 VL - 24 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017015/ DO - 10.1051/cocv/2017015 LA - en ID - COCV_2018__24_1_153_0 ER -
%0 Journal Article %A Heida, Martin %A Schweizer, Ben %T Stochastic homogenization of plasticity equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 153-176 %V 24 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017015/ %R 10.1051/cocv/2017015 %G en %F COCV_2018__24_1_153_0
Heida, Martin; Schweizer, Ben. Stochastic homogenization of plasticity equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 153-176. doi: 10.1051/cocv/2017015
Cité par Sources :