Semiclassical ground state solutions for a Choquard type equation in with critical exponential growth
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 177-209
Cet article a éte moissonné depuis la source Numdam
In this paper we study a nonlocal singularly perturbed Choquard type equation
Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017007
Accepté le :
DOI : 10.1051/cocv/2017007
Classification :
35J25, 35J20, 35J60
Keywords: Choquard equation, semiclassical solutions, Trudinger-Moser inequality, critical exponential growth
Keywords: Choquard equation, semiclassical solutions, Trudinger-Moser inequality, critical exponential growth
Affiliations des auteurs :
Yang, Minbo 1
@article{COCV_2018__24_1_177_0,
author = {Yang, Minbo},
title = {Semiclassical ground state solutions for a {Choquard} type equation in $\mathbb{R}^{2}$ with critical exponential growth},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {177--209},
year = {2018},
publisher = {EDP-Sciences},
volume = {24},
number = {1},
doi = {10.1051/cocv/2017007},
mrnumber = {3764139},
zbl = {1400.35086},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017007/}
}
TY - JOUR
AU - Yang, Minbo
TI - Semiclassical ground state solutions for a Choquard type equation in $\mathbb{R}^{2}$ with critical exponential growth
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2018
SP - 177
EP - 209
VL - 24
IS - 1
PB - EDP-Sciences
UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017007/
DO - 10.1051/cocv/2017007
LA - en
ID - COCV_2018__24_1_177_0
ER -
%0 Journal Article
%A Yang, Minbo
%T Semiclassical ground state solutions for a Choquard type equation in $\mathbb{R}^{2}$ with critical exponential growth
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 177-209
%V 24
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017007/
%R 10.1051/cocv/2017007
%G en
%F COCV_2018__24_1_177_0
Yang, Minbo. Semiclassical ground state solutions for a Choquard type equation in $\mathbb{R}^{2}$ with critical exponential growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 177-209. doi: 10.1051/cocv/2017007
Cité par Sources :