Semiclassical ground state solutions for a Choquard type equation in 2 with critical exponential growth
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 177-209

Voir la notice de l'article provenant de la source Numdam

In this paper we study a nonlocal singularly perturbed Choquard type equation

-ε 2 Δu+V(x)u= μ-2 1 |x| μ *P ( x ) G ( u )P(x)g(u)
in 2 , where ε is a positive parameter, 1 |x| μ with 0<μ<2 is the Riesz potential, * is the convolution operator, V(x), P(x) are two continuous real functions and G(s) is the primitive function of g(s). Suppose that the nonlinearity g is of critical exponential growth in 2 in the sense of the Trudinger-Moser inequality, we establish some existence and concentration results of the semiclassical solutions of the Choquard type equation in the whole plane. As a particular case, the concentration appears at the maximum point set of P(x) if V(x) is a constant.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017007
Classification : 35J25, 35J20, 35J60
Keywords: Choquard equation, semiclassical solutions, Trudinger-Moser inequality, critical exponential growth

Yang, Minbo 1

1 Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P.R. China.
@article{COCV_2018__24_1_177_0,
     author = {Yang, Minbo},
     title = {Semiclassical ground state solutions for a {Choquard} type equation in $\mathbb{R}^{2}$ with critical exponential growth},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {177--209},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {1},
     year = {2018},
     doi = {10.1051/cocv/2017007},
     mrnumber = {3764139},
     zbl = {1400.35086},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017007/}
}
TY  - JOUR
AU  - Yang, Minbo
TI  - Semiclassical ground state solutions for a Choquard type equation in $\mathbb{R}^{2}$ with critical exponential growth
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 177
EP  - 209
VL  - 24
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017007/
DO  - 10.1051/cocv/2017007
LA  - en
ID  - COCV_2018__24_1_177_0
ER  - 
%0 Journal Article
%A Yang, Minbo
%T Semiclassical ground state solutions for a Choquard type equation in $\mathbb{R}^{2}$ with critical exponential growth
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 177-209
%V 24
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017007/
%R 10.1051/cocv/2017007
%G en
%F COCV_2018__24_1_177_0
Yang, Minbo. Semiclassical ground state solutions for a Choquard type equation in $\mathbb{R}^{2}$ with critical exponential growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 177-209. doi: 10.1051/cocv/2017007

Cité par Sources :